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An Inverse Multiscale Schrödinger Problem

Objectives
We define a methodology to contruct coarse approximations of highly oscillating PDEs when
coefficients are not known but only measurements of a few solutions are available. This methodol-
ogy is inspired by homogenization theory but overcome many of its limitations (e.g. periodicity
assumptions) and is more versatile (e.g. valid outside the homogenization regime).

Assume we are able to measure solutions uε(f ) to the multiscale Schrödinger equation (1) for a few
selected RHS f1, ..., fP .

Lεuε :=
(
−∆+ ε−1V (ε−1·)

)
uε = f in Ω. (1)

How can we define an effective constant potential V such that solutions uε to (1) for new RHS are
well approximated by the solutions u to the coarse Schrödinger problem

Lu :=
(
−∆+ V

)
u = f in Ω. (2)

Can we improve these approximations, e.g. by building a first order term ?
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Fig 1. : Schrödinger Solutions

Homogenization theory assess the existence of an homogenized coefficient V⋆ and a corrector w
to obtain satisfactory L2 and H1 approximations. But ...

Homogenization Our Methodology
Pros ◦ Analytical expressions available

(in periodic regime)
∆w = V, in Q = (0, 1)d,

V⋆ = −∥∇w∥2
L2(Q)

,

uε ≈L2 u⋆,

uε ≈H1 u⋆(1 + εw(ε−1·)).

◦ Inverse Problem (IP) adapted
(only require few measurement
uε(f ))
◦ wide range of applications (w.r.t
ε)
◦ versatility (valid in non-periodic
context)

Limitations ◦ based on strong hypothesis
(e.g. periodicity),
◦ limited range of validity (vanish-
ing ε),
◦ not IP adapted (require to know
V )

◦ No analytical expression

An Optimization Formulation

Strategy For Best Effective Coefficient

We examine the worst case scenario and try to minimize it upon V .

inf
V ∈R

max
f ∈Span(fi)1≤i≤P ,

∥f∥L2(Ω) = 1.

(
∥uε(f )− u(f )∥L2(Ω)

)
(3)

The arginf V gives a satisfaying macroscopic description of the system : the related solutions u
are good L2 approximation of uε.

Numerical Aspects :

• Iterative Algorithm : starting from (V
n
, fn), we solve the max at fixed V

n, hence finding the
argmax fn+1, then we solve the inf with fixed fn+1, hence finding V

n+1.

• Quadratic formulation in V : we apply the 0th-operator (−∆)−1(−∆ + V ) to uε(f ) − u(f ) to
recover a quadratic formulation in V .

• Computational Cost : Each step require only solving a P × P eigenvalue problem. We need
Niter ≈ 10 iterations.

Strategy For Corrector

Inspired by the relation ∇uε ≈L2 ∇u⋆ + u⋆ (∇w) (ε−1·)) (stemming from homogenization theory),
we define a first order corrected term C by considering

inf
C∈(L2(Ω))2

P∑
p=1

∥∇uε(fp)−∇u(fp)− u(fp)C∥L2(Ω) (4)

The arginf C can be used to correct the previous coarse solutions u, hence obtaining good H1

approximations.

Numerical Aspects :

• Piecewise constant functions : in practice, uε and u are P1 elements, and C is searched
among piecewise constant functions. The problem can be reduced to many optimization prob-
lems of small size

• Computational Cost : On each NK triangles of the mesh, we perform a local integral to define
the value of C.

Numerical Results

Experiments have been performed in 2D (Ω = [0, 1]2) using the potential

V (x, y) = π2
√
8 (sin(2πx) + sin(2πy)) .

For loadings, we consider the eigenmodes of (−∆)-operator, denoted (fp)p≥1.
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Fig 2. : Moiré Materials

Tab 1. : Homogenization vs Our Methodology

Fig 3 : Kernel Potential V and Oscillating Potential Vε = ε−1V
(
ε−1·

)
(for ε = 0.1).

Fig 4 : Error between homogenized potential V⋆ and effective potential V ε (com-
puted with P = 1) as a function of ε.

Fig 5 : L2 maximal error sup
f∈Span1≤p≤10(fp)

(∥uε(f )−u(f )∥
L2(Ω)

∥uε(f )∥L2(Ω)

)
(V computed with

P = 3) as a function of ε.

Fig 6 : H1 maximal error sup
f∈Span1≤p≤10(fp)

(
∥∇uε(f )−∇u(f )−uCε∥L2(Ω/∂Ω)

∥∇uε(f )∥L2(Ω/∂Ω)

)
(V com-

puted with P = 3) as a function of ε.




