CONSTRUCTION OF COARSE APPROXIMATIONS FOR A SCHRÖDINGER PROBLEM WITH HIGHLY OSCILLATORY COEF-FICIENTS Claude Le Bris, Frédéric Legoll, **Simon Ruget**

An Inverse Multiscale Schrödinger Problem

Objectives

We define a **methodology to contruct coarse approximations** of highly oscillating PDEs when coefficients are *not* known but only measurements of *a few* solutions are available. This methodology is **inspired by homogenization theory** but overcome many of its limitations (e.g. periodicity assumptions) and is more **versatile** (e.g. valid outside the homogenization regime).

Assume we are able to measure solutions $u_{\varepsilon}(f)$ to the multiscale Schrödinger equation (1) for a few selected RHS $f_1, ..., f_P$.

$$\mathcal{L}_{\varepsilon} u_{\varepsilon} \coloneqq \left(-\Delta + \varepsilon^{-1} V(\varepsilon^{-1} \cdot) \right) u_{\varepsilon} = f \text{ in } \Omega.$$
(1)

How can we define an *effective constant potential* \overline{V} such that solutions u_{ε} to (1) for new RHS are

Numerical Results

Experiments have been performed in 2D ($\Omega = [0, 1]^2$) using the potential

 $V(x, y) = \pi^2 \sqrt{8} \left(\sin(2\pi x) + \sin(2\pi y) \right).$

For loadings, we consider the eigenmodes of $(-\Delta)$ -operator, denoted $(f_p)_{p\geq 1}$.

well approximated by the solutions \overline{u} to the coarse Schrödinger problem

 $\overline{\mathcal{L}}\overline{u} \coloneqq \left(-\Delta + \overline{V}\right)\overline{u} = f \text{ in } \Omega.$

Can we *improve these approximations*, e.g. by building a first order term ?

Fig 2. : Moiré Materials

(2)

Homogenization theory assess the existence of an homogenized coefficient V_{\star} and a corrector w to obtain satisfactory L^2 and H^1 approximations. But ...

	Homogenization	Our Methodology
Pros	$\circ \text{ Analytical expressions available}$ (in periodic regime) $\begin{cases} \Delta w = V, \text{ in } Q = (0,1)^d, \\ V_{\star} = - \ \nabla w\ _{L^2(Q)}^2, \\ u_{\varepsilon} \approx_{L^2} u_{\star}, \\ u_{\varepsilon} \approx_{H^1} u_{\star} (1 + \varepsilon w(\varepsilon^{-1} \cdot)). \end{cases}$	• Inverse Problem (IP) adapted (only require few measurement $u_{\varepsilon}(f)$) • wide range of applications (w.r.t ε) • versatility (valid in non-periodic context)
Limitations	 based on strong hypothesis (e.g. periodicity), limited range of validity (vanishing ε), not IP adapted (require to know V) 	 No analytical expression

Fig 3 : Kernel Potential V and Oscillating Potential $V_{\varepsilon} = \varepsilon^{-1} V (\varepsilon^{-1} \cdot)$ (for $\varepsilon = 0.1$).

Fig 4 : Error between homogenized potential V_{\star} and effective potential $\overline{V}_{\varepsilon}$ (computed with P = 1) as a function of ε .

 Tab 1.
 Homogenization vs Our Methodology

An Optimization Formulation

Strategy For Best Effective Coefficient

We examine the worst case scenario and try to minimize it upon \overline{V} .

$$\begin{array}{l} \inf_{\overline{V}\in\mathbb{R}} \max_{f\in \operatorname{Span}(f_i)_{1\leq i\leq P},} \left(\|u_{\varepsilon}(f)-\overline{u}(f)\|_{L^2(\Omega)} \right) \\ \|f\|_{L^2(\Omega)} = 1. \end{array} \tag{3}$$

The arginf \overline{V} gives a satisfaying macroscopic description of the system : the related solutions \overline{u} are good L^2 approximation of u_{ε} .

Numerical Aspects :

- Iterative Algorithm : starting from (\overline{V}^n, f^n) , we solve the max at fixed \overline{V}^n , hence finding the argmax f^{n+1} , then we solve the inf with fixed f^{n+1} , hence finding \overline{V}^{n+1} .
- Quadratic formulation in \overline{V} : we apply the 0^{th} -operator $(-\Delta)^{-1}(-\Delta + \overline{V})$ to $u_{\varepsilon}(f) \overline{u}(f)$ to recover a quadratic formulation in \overline{V} .
- Computational Cost : Each step require only solving a $P \times P$ eigenvalue problem. We need

 $N_{\text{iter}} \approx 10$ iterations.

Strategy For Corrector

Inspired by the relation $\nabla u_{\varepsilon} \approx_{L^2} \nabla u_{\star} + u_{\star} (\nabla w) (\varepsilon^{-1} \cdot))$ (stemming from homogenization theory), we define a first order corrected term *C* by considering

$$\inf_{C \in (L^2(\Omega))^2} \sum_{p=1}^P \|\nabla u_{\varepsilon}(f_p) - \nabla \overline{u}(f_p) - \overline{u}(f_p)C\|_{L^2(\Omega)}$$

The arginf \overline{C} can be used to *correct* the previous coarse solutions \overline{u} , hence **obtaining good** H^1 **approximations**.

Numerical Aspects :

- **Piecewise constant functions** : in practice, u_{ε} and \overline{u} are \mathbb{P}^1 elements, and *C* is searched among piecewise constant functions. The problem can be reduced to many optimization problems of small size
- Computational Cost : On each N_K triangles of the mesh, we perform a local integral to define the value of \overline{C} .

References

(4)

- [1] A. Bensoussan, J.-L. Lions, and G. Papanicolaou. *Asymptotic analysis for periodic structures*. Vol. 374. American Mathematical Soc., 2011.
- [2] C. Le Bris, F. Legoll, and S. Lemaire. "On the best constant matrix approximating an oscillatory matrix-valued coefficient in divergence-form operators". In: *ESAIM: Control, Optimisation and Calculus of Variations* 24.4 (2018), pp. 1345–1380.
- [3] C. Le Bris, F. Legoll, and K. Li. "Approximation grossière d'un problème elliptique à coefficients hautement oscillants". In: *Comptes Rendus Mathematique* 351.7-8 (2013), pp. 265–270.