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An Inverse Multiscale Schrodinger Problem Numerical Results

Experiments have been performed in 2D (2 = [0, 1]) using the potential

‘Objectives

We define a methodology to contruct coarse approximations of highly oscillating PDEs when V(x,y) = 7*V8 (sin(2rz) + sin(27y)) .
coefficients are not known but only measurements of a few solutions are available. This methodol- For loadings, we consider the eigenmodes of (—A)-operator, denoted (f,),>1-
ogy is inspired by homogenization theory but overcome many of its limitations (e.g. periodicity -
assumptions) and is more versatile (e.g. valid outside the homogenization regime).

Assume we are able to measure solutions u-( f) to the multiscale Schrédinger equation (1) for a few
selected RHS f1, ..., fp.

Loug = (—A 4 5—1V(e—1-)) uz = fin 9. (1)

How can we define an effective constant potential V such that solutions u. to (1) for new RHS are
well approximated by the solutions w to the coarse Schrodinger problem

Lu=(-A+V)u=finQ. (2)

Can we improve these approximations, e.g. by building a first order term ?
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W e e Fig 3 : Kernel Potential V' and Oscillating Potential Vz = e~V (¢71.) (for e = 0.1).
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Fig 1. : Schrodinger Solutions Fig 2. : Moiré Materials 102

Homogenization theory assess the existence of an homogenized coefficient V, and a corrector w
to obtain satisfactory L? and H'! approximations. But ...

Homogenization Our Methodology ' ' ' ' '
Pros o Analytical expressions available o Inverse Problem (IP) adapted 10-*4 107%2 10! 10798 1006 1004
(in periodic regime) (only require few measurement e
. us(f)) . . . —
(Aw ="V, inQ=1(0,1) Oi,f,iz,e range of applications (w.r.t Fig 4 : Error between homogenized potential V, and effective potential V. (com-
Vi = —HVwHQLQ(Q), ) puted with P = 1) as a function of ¢.
Ue A7 2 Us, o versatility (valid in non-periodic
- text
| Ue Rl u*(l + €w(€ 1)) contex ) 100 — | | | .
Limitations |0 based on strong hypothesis o No analytical expression | &= Error Sup L? }
(e.g. periodicity), P Y X 82 |
o limited range of validity (vanish- . .
Ing ¢), i |
o not IP adapted (require to know
v 1074 ¢ -
Tab 1. : Homogenization vs Our Methodology i |
An Optimization Formulation * |
1072 | -
- | | | | | .
Strategy For Best Effective Coefficient ) 10-14 10-12 10-! 10-08 10-0-6 10-04
We examine the worst case scenario and try to minimize it upon V. €
. _ us(f)—u(f __
_Inf max (||us(f) — U(f)HLQ(Q)) (3) Fig 5 : L? maximal error sup (H \Tu>(f)|(| )|L2(Q>) (V' computed with
VER f eSpan(f;)i<i<p fespan; <,<10(fp) SN2
HfHL2<Q> = 1. P = 3) as a function of .
The arginf V gives a satisfaying macroscopic description of the system : the related solutions u | | |
2 . .
are good L“ approximation of .. 10-95 | |—=—Error Sup !l )
Numerical Aspects : yoxe
+ lterative Algorithm : starting from (V", ™), we solve the max at fixed V"', hence finding the
argmax ™1, then we solve the inf with fixed f"+!, hence finding 7" .
» Quadratic formulation in V' : we apply the 0th-operator (—A)"H—=A + V) to u(f) — a(f) to 1071 -
recover a quadratic formulation in V.
« Computational Cost : Each step require only solving a P x P eigenvalue problem. We need
Niter ~ 10 iterations.
Strategy For Corrector & -5 | |
Inspired by the relation Vue ~ ;2 V. + u, (Vw) (71+)) (stemming from homogenization theory), | | | | |
we define a first order corrected term C' by considering 10-4 10-12 10! 10-98 10-06 710-04
B 3
inf |Vue(fp) — Vu(fp) —a(fp)C|l ;2 (4) [Vue(f)—Vu(f)—uC: _
(Je(LQ(Q))sz_:1 L) Fig 6 : H'! maximal error Sup ( ”>vu <;)‘1 HLQ(Q/M (V com-
C feSpan; <,<1o(/fp) SMNL2(0/00)
The arginf C can be used to correct the previous coarse solutions %, hence obtaining good H' puted with P = 3) as a function of ¢.
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