EFFECTIVE APPROXIMATION BASED ON BOUNDARY MEASUREMENTS Claude Le Bris, Frédéric Legoll, **Simon Ruget**

An Inverse Multiscale Problem

Objectives

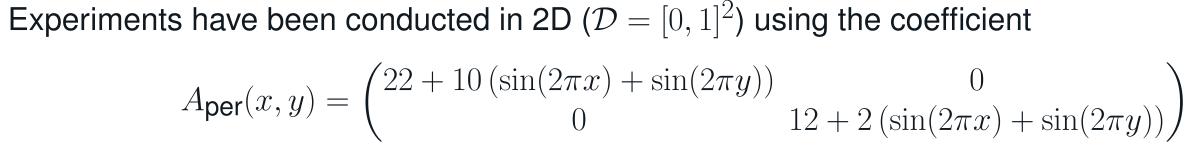
We aim at developping a **methodology to contruct coarse approximations** of highly oscillating PDEs when coefficients are *not* known and only *boundary (possibly agregated) measurements* of itssolutions are available. This methodology is **inspired by homogenization theory** but overcome some of its limitations (e.g. periodicity assumptions) and is more **versatile** (e.g. valid outside the homogenization regime).

Assume we are able to measure observables $\mathcal{O}(A_{\varepsilon}, g)$ associated to the multiscale Schrödinger equation (1) for a few selected loadings $g_1, ..., g_P$.

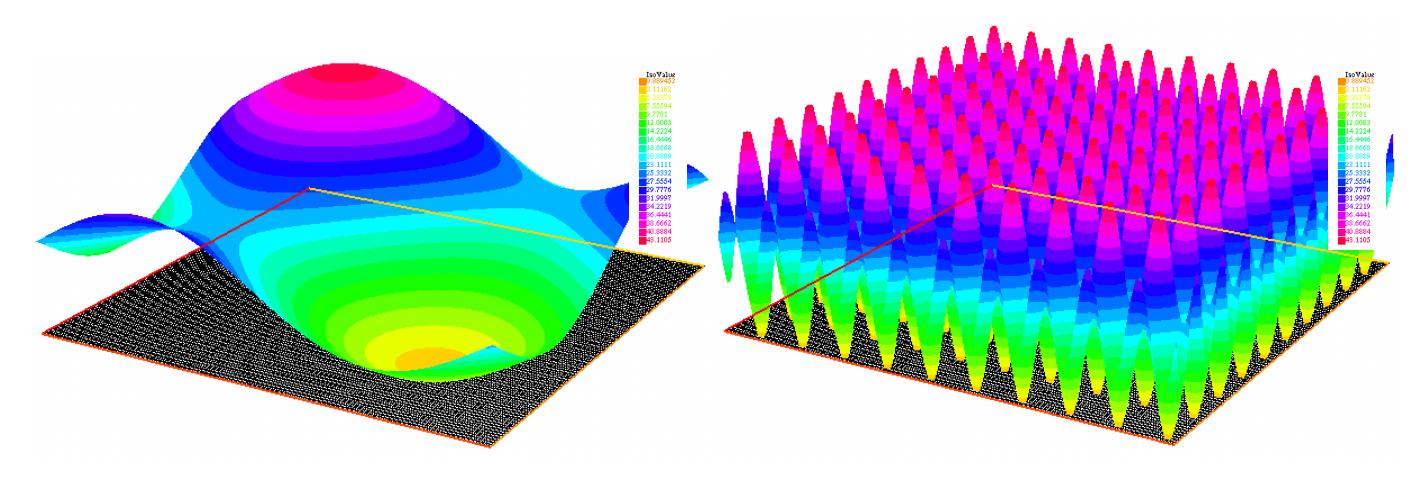
$$\begin{cases} -\operatorname{div} \left(A_{\varepsilon} \nabla u_{\varepsilon}\right) = 0 \text{ in } \mathcal{D}, \\ \left(A_{\varepsilon} \nabla u_{\varepsilon}\right) \cdot n = g \text{ on } \partial \mathcal{D}. \end{cases}$$
(1)

How can we define an *effective constant coefficient* \overline{A} such that solutions u_{ε} to (1) for new RHS are

Numerical Results



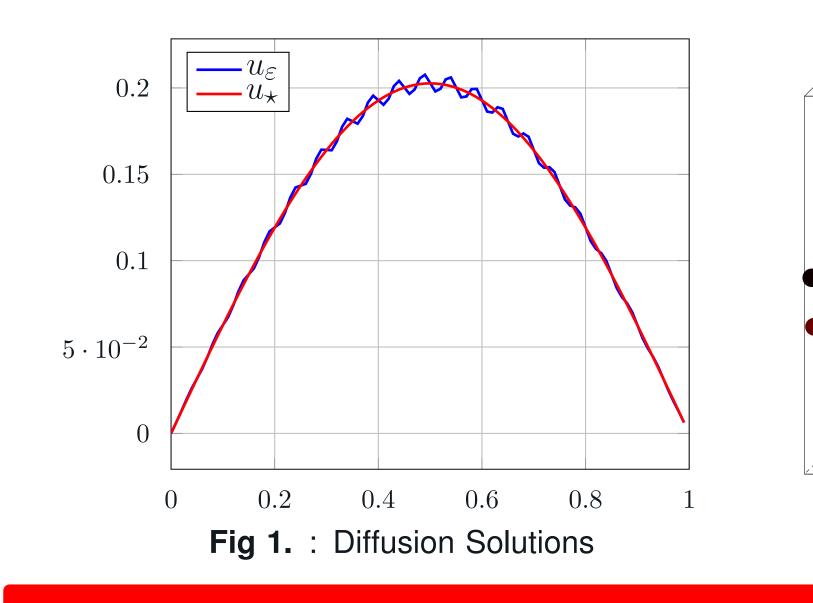
and the loadings $g_{p,q}(x,y) = \cos(p\pi x)\cos(q\pi y)$.

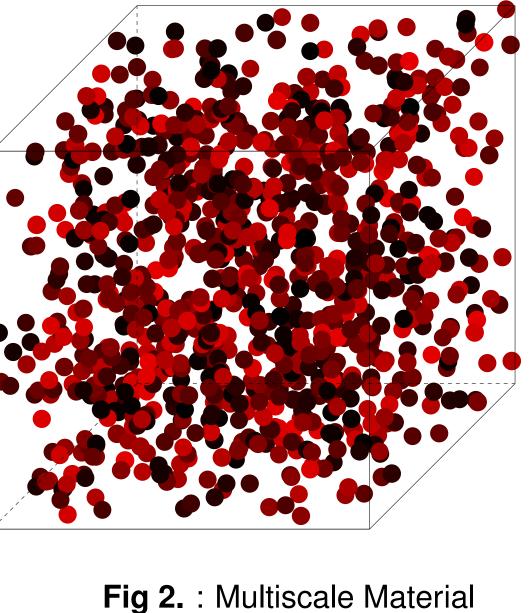


well approximated by the solutions \overline{u} to the coarse diffusion problem

$$-\operatorname{div}\left(\overline{A}\nabla\overline{u}\right) = 0 \text{ in } \mathcal{D},\\ \left(\overline{A}\nabla\overline{u}\right) \cdot n = g \text{ on } \partial\mathcal{D}.$$

In this study, the observable is the compliance defined by $\mathcal{O}(A_{\varepsilon}, g) = \frac{1}{2} \int_{\partial \mathcal{D}} g u_{\varepsilon}(g)$. Another choice could be boundary measurements $u_{\varepsilon}(g)|_{\partial \mathcal{D}}$.





(2)

Building An Effective Coefficient

Strategy For Best Effective Coefficient

We examine the worst case scenario and try to minimize it upon \overline{A} .

$$I_c = \inf I_c(\overline{A})$$

Fig 3: Kernel Coefficient $A_{\text{per, }11}$ and Oscillating Coefficient $A_{\varepsilon,11} = A_{\text{per, }11}\left(\frac{\cdot}{\varepsilon}\right)$ (with $\varepsilon = 0.1$).

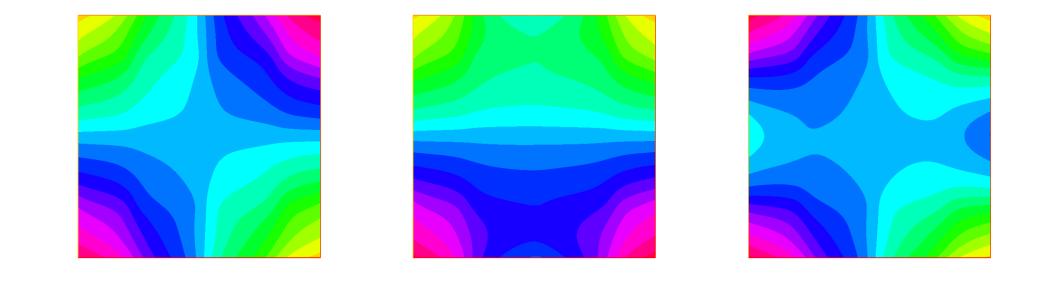
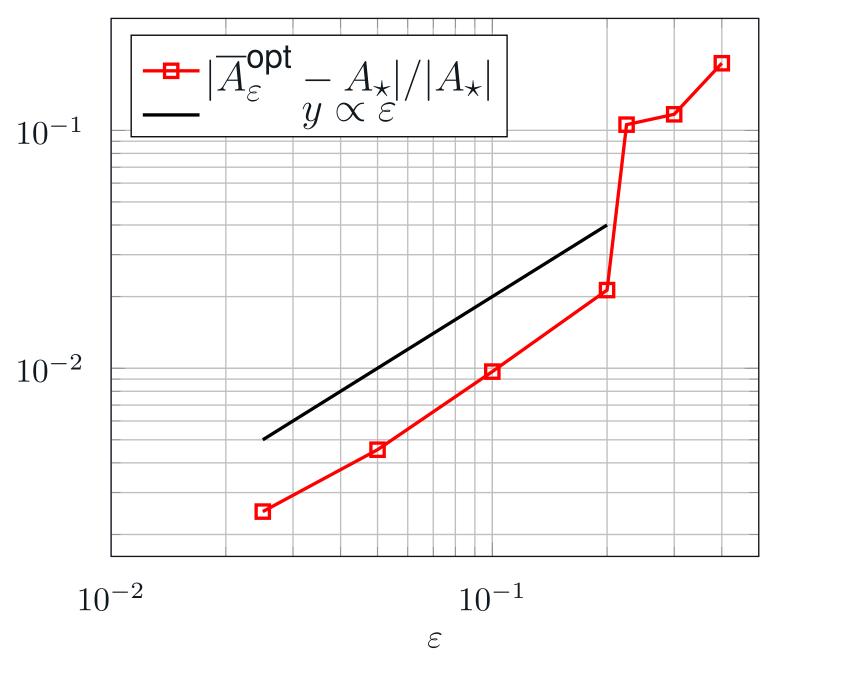


Fig 4 : Loadings $g_{p,q}$.



$$J_{\varepsilon}(\overline{A}) = \sup_{\substack{g \in L^{2}(\partial \mathcal{D}), \\ \|g\|_{L^{2}(\partial \mathcal{D})} = 1.}} \left(\left| \mathcal{O}(A_{\varepsilon}, g) - \mathcal{O}(\overline{A}, g) \right| \right).$$

The arginf $\overline{A}_{\varepsilon}^{opt} \in \mathbb{R}_{sym}^{d \times d}$ gives a satisfying effective description of the system : the related solutions \overline{u} are good L^2 approximation of u_{ε} .

Numerical Aspects :

with

- Cost Function : The sup is replaced by a max over the space spanned by a few loadings $g_1, ..., g_P$ (in practice $P \approx 3$). -
- Computational Cost : Each step requires solving a *P* coarse PDE. Using a gradient descent with adaptative step size (e.g. Armijo Rule) We need $N_{\text{iter}} \approx 15$ iterations.

Comparison To Other Strategies

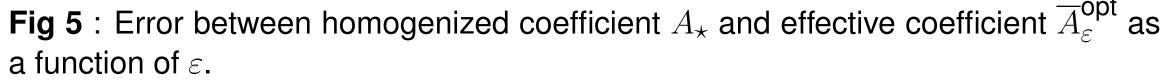
Our strategy is consistent with Homogenization theory (see [1]) in the sense that

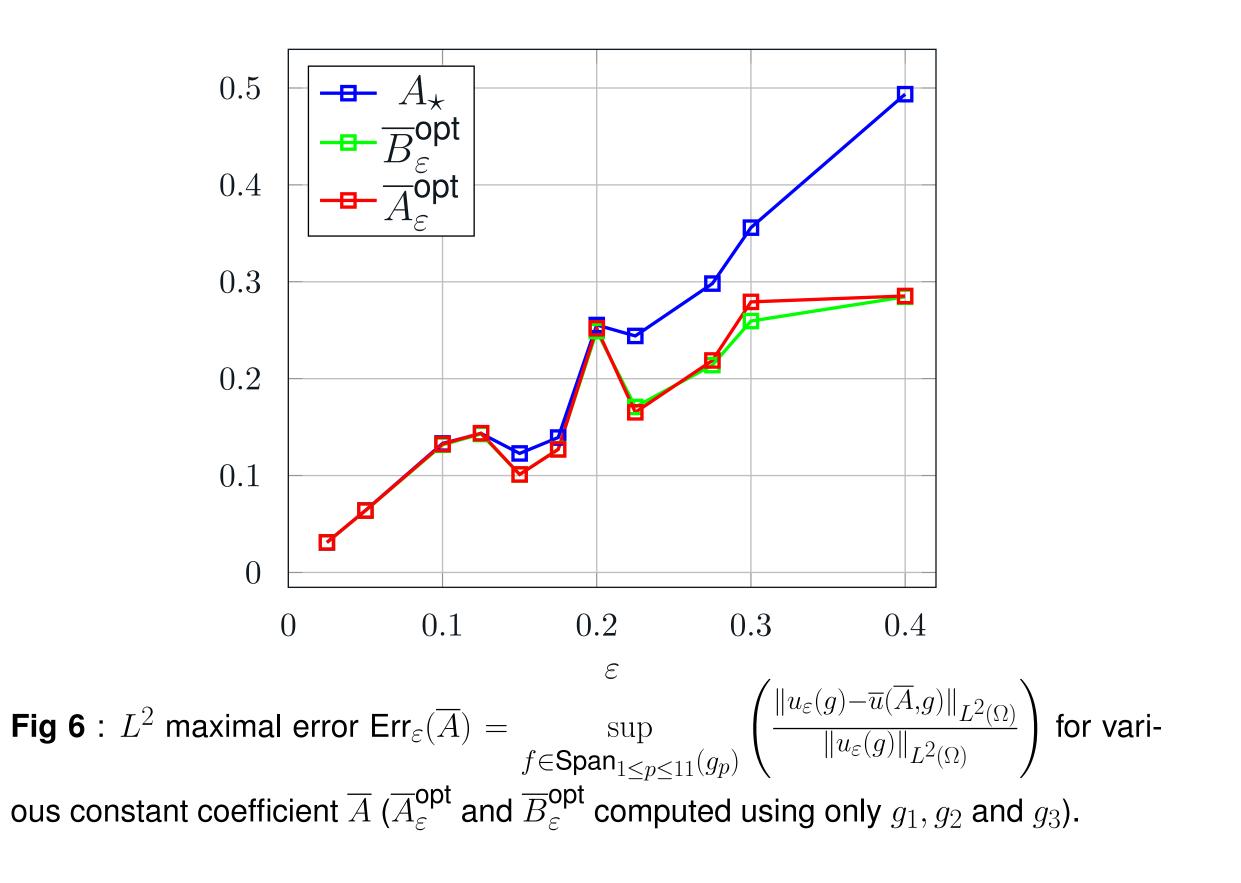
Consistency with Homogenization Theory

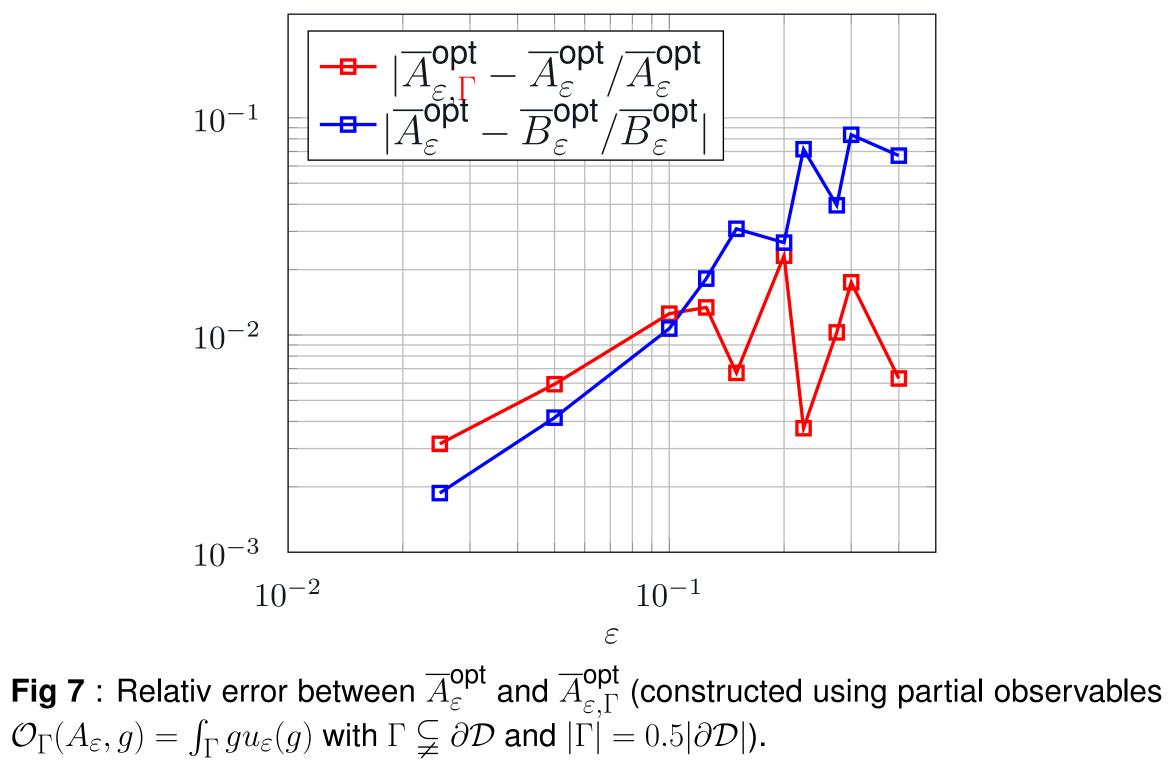
In the **periodic setting** (i.e. $A_{\varepsilon}(x) = A_{\text{per}}(\frac{x}{\varepsilon})$), any sequence of *quasiminimizers* $(\overline{A}_{\varepsilon}^{\#})_{\varepsilon>0}$ that satisfies $I_{\varepsilon} \leq J_{\varepsilon}(\overline{A}_{\varepsilon}^{\#}) \leq I_{\varepsilon} + \text{err}(\varepsilon)$ converges to the homogenized matrix A_{\star} :

 $\lim_{\varepsilon \to 0} \overline{A}_{\varepsilon}^{\#} = A_{\star}.$

In [2], another constant effective coefficient $\overline{B}_{\varepsilon}^{opt} \in \mathbb{R}^{d \times d}_{sym}$ is constructed using the knowledge of *full*







field measurements $u_{\varepsilon}(g)$: $\overline{B}_{\varepsilon}^{\mathsf{opt}} = \operatorname{arginf}_{\overline{A} \in \mathbb{R}^{d \times d} \operatorname{sup}_{g \in L^{2}(\partial \mathcal{D})}} \|u_{\varepsilon}(g) - u(\overline{A}, g)\|_{L^{2}(\mathcal{D})} / \|g\|_{L^{2}(\partial \mathcal{D})}$.

We can compare the performance of both coefficients $\overline{A}_{\varepsilon}^{opt}$ and $\overline{B}_{\varepsilon}^{opt}$ using the criteria

$$\mathsf{Err}(\overline{A}) = \sup_{g \in L^2(\partial \mathcal{D})} \frac{\|u_{\varepsilon}(g) - u(\overline{A}, g)\|_{L^2(\mathcal{D})}}{\|u_{\varepsilon}(g)\|_{L^2(\mathcal{D})}}.$$

Using Complete Field Measurements

There exists $C_1, C_2 > 0$ such that for any $\varepsilon > 0$,

 $\begin{aligned} \mathsf{Err}(\overline{B}_{\varepsilon}^{\mathsf{opt}}) &\leq C_1 \mathsf{Err}(\overline{A}_{\varepsilon}^{\mathsf{opt}}), \\ \mathsf{Err}(\overline{A}_{\varepsilon}^{\mathsf{opt}}) &\leq C_2 \sqrt{\mathsf{Err}(\overline{B}_{\varepsilon}^{\mathsf{opt}})}. \end{aligned}$

References

- [1] A. Bensoussan, J.-L. Lions, and G. Papanicolaou. *Asymptotic analysis for periodic structures*. Vol. 374. American Mathematical Soc., 2011.
- [2] C. Le Bris, F. Legoll, and S. Lemaire. "On the best constant matrix approximating an oscillatory matrix-valued coefficient in divergence-form operators". In: ESAIM: Control, Optimisation and Calculus of Variations 24.4 (2018), pp. 1345–1380.