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An Inverse Multiscale Problem

Objectives
We aim at developping a methodology to contruct coarse approximations of highly oscillating
PDEs when coefficients are not known and only boundary (possibly agregated) measurements
of itssolutions are available. This methodology is inspired by homogenization theory but over-
come some of its limitations (e.g. periodicity assumptions) and is more versatile (e.g. valid
outside the homogenization regime).

Assume we are able to measure observables O(Aε, g) associated to the multiscale Schrödinger
equation (1) for a few selected loadings g1, ..., gP .{

−div (Aε∇uε) = 0 in D,

(Aε∇uε) · n = g on ∂D.
(1)

How can we define an effective constant coefficient A such that solutions uε to (1) for new RHS are
well approximated by the solutions u to the coarse diffusion problem{

−div
(
A∇u

)
= 0 in D,(

A∇u
)
· n = g on ∂D.

(2)

In this study, the observable is the compliance defined by O(Aε, g) =
1
2

∫
∂D guε(g). Another choice

could be boundary measurements uε(g)|∂D.
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Fig 1. : Diffusion Solutions

Building An Effective Coefficient

Strategy For Best Effective Coefficient

We examine the worst case scenario and try to minimize it upon A.

Iε = inf
A ∈ Rd×d

sym,

α ≤ A ≤ β

Jε(A),

with
Jε(A) = sup

g ∈ L2(∂D),

∥g∥L2(∂D) = 1.

(∣∣∣O(Aε, g)−O(A, g)
∣∣∣) .

The arginf Aopt
ε ∈ Rd×d

sym gives a satisfying effective description of the system : the related solu-
tions u are good L2 approximation of uε.

Numerical Aspects :

• Cost Function : The sup is replaced by a max over the space spanned by a few loadings
g1, ..., gP (in practice P ≈ 3). -

• Computational Cost : Each step requires solving a P coarse PDE. Using a gradient descent
with adaptative step size (e.g. Armijo Rule) We need Niter ≈ 15 iterations.

Comparison To Other Strategies

Our strategy is consistent with Homogenization theory (see [1]) in the sense that

Consistency with Homogenization Theory

In the periodic setting (i.e. Aε(x) = Aper(
x
ε)), any sequence of quasiminimizers (A

#
ε )ε>0 that

satisfies Iε ≤ Jε(A
#
ε ) ≤ Iε + err(ε) converges to the homogenized matrix A⋆ :

lim
ε→0

A
#
ε = A⋆.

In [2], another constant effective coefficient Bopt
ε ∈ Rd×d

sym is constructed using the knowledge of full

field measurements uε(g) : Bopt
ε = arginf

A∈Rd×d
sym

supg∈L2(∂D) ∥uε(g)− u(A, g)∥L2(D)/∥g∥L2(∂D).

We can compare the performance of both coefficients A
opt
ε and B

opt
ε using the criteria

Err(A) = sup
g∈L2(∂D)

∥uε(g)− u(A, g)∥L2(D)

∥uε(g)∥L2(D)
.

Using Complete Field Measurements
There exists C1, C2 > 0 such that forany ε > 0,

Err(Bopt
ε ) ≤ C1Err(Aopt

ε ),

Err(Aopt
ε ) ≤ C2

√
Err(Bopt

ε ).
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Numerical Results

Experiments have been conducted in 2D (D = [0, 1]2) using the coefficient

Aper(x, y) =

(
22 + 10 (sin(2πx) + sin(2πy)) 0

0 12 + 2 (sin(2πx) + sin(2πy))

)
,

and the loadings gp,q(x, y) = cos(pπx) cos(qπy).
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Fig 2. : Multiscale Material

Fig 3 : Kernel Coefficient Aper, 11 and Oscillating Coefficient Aε,11 = Aper, 11
( ·
ε

)
(with ε = 0.1).

Fig 4 : Loadings gp,q.

Fig 5 : Error between homogenized coefficient A⋆ and effective coefficient Aopt
ε as

a function of ε.

Fig 6 : L2 maximal error Errε(A) = sup
f∈Span1≤p≤11(gp)

(
∥uε(g)−u(A,g)∥

L2(Ω)

∥uε(g)∥L2(Ω)

)
for vari-

ous constant coefficient A (Aopt
ε and B

opt
ε computed using only g1, g2 and g3).

Fig 7 : Relativ error between A
opt
ε and A

opt
ε,Γ (constructed using partial observables

OΓ(Aε, g) =
∫
Γ guε(g) with Γ ⫋ ∂D and |Γ| = 0.5|∂D|).




