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An Inverse Multiscale Problem Numerical Results
» Experiments have been conducted in 2D (D = |0, 1|°) using the coefficient
We aim at developping a methodology to contruct coarse approximations of highly oscillating Aper(, y) = (22 + 10 (sin(27x) + sin(27y)) | 0 | )
PDEs when coefficients are not known and only boundary (possibly agregated) measurements Per 0 12 4 2 (sin(27z) + sin(27y)) ) 7

of itssolutions are available. This methodology is inspired by homogenization theory but over-
come some of its limitations (e.g. periodicity assumptions) and is more versatile (e.g. valid
outside the homogenization regime).

and the loadings g, (x, y) = cos(pmx) cos(qmy).

Assume we are able to measure observables O(A., g) associated to the multiscale Schrédinger
equation (1) for a few selected loadings g1, ..., gp.

How can we define an effective constant coefficient A such that solutions u. to (1) for new RHS are
well approximated by the solutions u to the coarse diffusion problem

{div (AVE) = 0in D, 2

(Zw) -n = gondD.

Fig 3 : Kernel Coefficient A and Oscillating Coefficient A = A "
In this study, the observable is the compliance defined by O(A:, g) = & [51 guc(g). Another choice (wgilth c=0.1) per, 11 J & 11 per, 11 (2)

could be boundary measurements u:(g)|gp-
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Strategy For Best Effective Coefficient )) 0
Z c Rdxd )

We examine the worst case scenario and try to minimize it upon A.
sym>

a<ALp
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with £

Je(A) = sup (‘O(As,g)—O(zag)D-
g € L*(9D),

s | Fig 5 : Error between homogenized coefficient A, and effective coefficient ngt as
9lir2(ep) = L

a function of .
The argint ngt € Rgfnﬁl gives a satisfying effective description of the system : the related solu-
tions 7 are good L° approximation of ..

|
Numerical Aspects : 0.5 )
« Cost Function : The sup is replaced by a max over the space spanned by a few loadings 04 | |
g1, ..., gp (in practice P =~ 3). - '
« Computational Cost : Each step requires solving a P coarse PDE. Using a gradient descent 0.3 | N
with adaptative step size (e.g. Armijo Rule) We need Njor ~ 15 iterations.
0.2 | ~
Comparison To Other Strategies
0.1 | ~
Our strategy is consistent with Homogenization theory (see [1]) in the sense that
Consistency with Homogenization Theory 0 L ' ' ' —
_ S -y 0 0.1 0.2 0.3 0.4
In the periodic setting (i.e. A-(z) = Aper(2)), any sequence of quasiminimizers (A7 ).~ that
- o . . _ =
fies I. < J-(A) < I he h Ay — ue(g)—u(A,g
satisfies I. < J-(A”) < I. + err(¢) converges to the homogenized matrix A, Fig 6 : 72 maximal error Err.(7) — - ( (HL (g(>|| >L2(Q)> or vari-
lim ZZ% — A, feSpan; <j<11(gp) SNLAQ)
2=l ous constant coefficient A (ngt and ngt computed using only g1, go and gs).
In [2], another constant effective coefficient Egpt S Rgﬁﬁl IS constructed using the knowledge of full | — T T
: . popt . 1 —opt  —opt ,—opt
field measurements u:(g) : B, = arglnfzeRgm sup e r2(ap) ue(g) — ulA, 9)ll 2py/ 1191l 2(ap)- —=— ‘AEF]); _ Agp /Agp
We can compare the performance of both coefficients A°°" and B°P" using the criteria 107" - ‘ng _ Egpt /Egpt‘
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Using Complete Field Measurements ) 10-2

There exists C'{, Co > 0 such that forany ¢ > 0,

Err(Egpt) < ClErr(ngt),
Err(A%Y < Cg\/ Err(B°PY.
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