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Inverse problem

Our study focuses on inverse problems for PDEs.
Consider an equation of the type

Lu = f .

Is it possible to reconstruct the operator L (namely its coefficients)
from the knowledge of some solutions u ?

Can other (coarser) observables be used to reconstruct L ?
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Inverse multiscale problem

Our study focuses on inverse problems for multiscale PDEs:

Lεuε = f .

Determining the fine-scale structure from measurements is an ill-posed
problem... but identifying effective parameters is possible !
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Inverse multiscale problem and ill-posedness

Consider the prototypical linear equation oscillating at the small length
scale ε,

Lεuε = −div (Aε∇uε) = f in Ω, uε = 0 on ∂Ω, (1)

with Aε a bounded coercive coefficient.

Homogenization1 assesses the existence of a limit equation when ε→ 0,

L?u? = −div (A?∇u?) = f in Ω, u? = 0 on ∂Ω, (2)

with A? an effective coefficient for which, in general, there exists no
formula (abstract compactness result).

1
see e.g. A. Benssoussan, J.-L. Lions, G. Papanicolaou, Asymptotic Analysis for Periodic Structures, 1978.
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Inverse multiscale problem and ill-posedness

Issue: in the limit ε→ 0, the observable uε is very close to u? whereas
the operator we seek to reconstruct, Lε, is very different from L?, its
homogenized version.
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Figure 3: Two similar solutions associated to two distinct diffusion
coefficients

Simon Ruget (ENPC & Inria) Inverse Multiscale Problems May 2024 6 / 25



Building an effective coefficient

Consider the multiscale diffusion problem (3)

Lεuε = −div (Aε∇uε) = f in Ω, uε = 0 on ∂Ω. (3)

From the knowledge of observables (to be explicited latter) associated to
solutions uε for various r.h.s. f , our aim is to propose a numerical methodology
to build an effective operator L approaching Lε.

Our strategy

is inspired by homogenization theory,

does not rely on classical hypothesis for homogenization (such as
periodicity) which may be too restrictive in practical situations,

is valid outside the regime of homogenization (i.e. ε→ 0),

requires few prior information about the underlying system (the knowledge
of P ≈ 3 averaged observables is sufficient).
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Previous work [CRAS2013]2, [COCV2018]3

Idea: For A ∈ Rd×d
sym a constant symmetric coefficient, denote u = u(A, f )

the solution to

Lu = −div
(
A∇u

)
= f in Ω, u = 0 on ∂Ω. (4)

The quality of the approximation of Lε by L can be quantified through the
functional

sup
‖f ‖L2(Ω)=1

‖uε(f )− u(A, f )‖L2(Ω)

Our strategy consists in minimizing the worst case scenario by looking at
the optimization problem

inf
A∈Rd×d

sym

sup
‖f ‖L2(Ω)=1

‖uε(f )− u(A, f )‖L2(Ω)

Issue: Using the full solutions uε in the whole domain Ω as observables
is disproportionate to estimate a d × d constant symmetric matrix.

2
C. Le Bris, F. Legoll, K. Li, CRAS, 2013.

3
C. Le Bris, F. Legoll, S. Lemaire, ESAIM COCV, 2018.
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Exploiting the energy

Coarser observables can be considered, such as the energy

E(Aε, f ) =
1

2

ˆ
Ω
Aε∇uε · ∇uε −

ˆ
Ω
fuε. (5)

Homogenization theory guarantees the convergence for energy:

E(Aε, f ) −→
ε→0
E(A?, f ) in R, (6)

with

E(A?, f ) =
1

2

ˆ
Ω
A?∇u? · ∇u? −

ˆ
Ω
fu?,

and where u? still denotes the solution to

L?u? = −div (A?∇u?) = f in Ω, u? = 0 on ∂Ω.
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Our strategy

For A ∈ Rd×d
sym a constant symmetric coefficient, denote u = u(A, f ) the

solution to

Lu = −div
(
A∇u

)
= f in Ω, u = 0 on ∂Ω. (7)

To assess the quality of the approximation of Lε by L, we use the

functional

(((((((((((((((hhhhhhhhhhhhhhh

sup
‖f ‖L2(Ω)=1

‖uε(f )− u(A, f )‖L2(Ω) −→ sup
‖f ‖L2(Ω)=1

|E(Aε, f )− E(A, f )|

Our strategy consists in minimizing the worst case scenario by looking at
the optimization problem

inf
A∈Rd×d

sym

sup
‖f ‖L2(Ω)=1

|E(Aε, f )− E(A, f )|
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In the limit of separated scales

In the limit of vanishing ε, the problem leads to the homogenized diffusion
coefficient as shown by the following proposition.

Iε = inf
A∈Rd×d

sym

sup
‖f ‖L2(Ω)=1

|E (Aε, f )− E
(
A, f

)
|. (8)

Proposition (Asymptotic consistency, periodic case)

For any sequence of quasi-minimizer
(
A

#
ε

)
ε>0

, i.e. sequence such that

Iε ≤ Jε(A
#
ε ) ≤ Iε + ε, (9)

the following convergence holds:

lim
ε→0

A
#
ε = A?. (10)
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Proof for consistency proposition

Let Jε(A) = sup
‖f ‖L2(Ω)=1

|E (Aε, f )− E
(
A, f

)
|.

Lemma (Convergence for the
energy)

In the periodic setting, we have

lim
ε→0

Jε(A?) = 0.

We also use in the proof that the
injection H1(Ω) ⊂ L2(Ω) is compact.
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Figure 1: Isovalue of Jε(A).
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Computational procedure

To solve
Iε = inf

A∈Rd×d
sym

sup
‖f ‖L2(Ω)=1

(
E (Aε, f )− E

(
A, f

))2
.

Given some iterate A
n
,

À Define f n, the argsup to

sup
f s.t. ‖f ‖L2(Ω) = 1

(
E(Aε, f )− E(A

n
, f )
)2
.

In practice, supf∈L2(Ω) → supf∈VP
on VP = Span{P r.h.s.}, with P ≈ 3.

This step requires computing P solutions to a coarse PDE in order to get

the energy E(A
n
, ·). We next solve a P × P eigenvalue problem.

Á Define A
n+1

, the optimizer to

inf
A∈Rd×d

sym

(
E(Aε, f

n)− E(A, f n)
)2
.

In practice, we perform a gradient descent. The gradient can be expressed

with solutions computed in step À, hence no additionnal costs.

In practice, we perform N ≈ 10 iterations of both steps.
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Numerical results

We use an alternating direction algorithm in 2D (Ω = [0, 1]2) using the
coefficient

Aε(x , y) = Aper
(x
ε
,
y

ε

)
=
(

22 + 10× (sin(2π x
ε

) + sin(2π y
ε

)) 0

0 12 + 2× (sin(2π x
ε

) + sin(2π y
ε

))

)
.

for which

Figure 2: Components 11 and 22 of coefficient Aε.

A? ≈
(

19.3378 0
0 11.8312

)
.
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Consistency with homogenization theory
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Figure 3: Error between the homogenized coefficient A? and the effective
coefficient Aε as a function of ε.
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Beyond the regime of separated scales
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Figure 4: Error
supf∈VQ

‖uε(f )−u(Aε,P ,f )‖L2(Ω)

‖uε(f̄ )‖L2(Ω)

as a function of ε. (Aε is computed

with P � Q = 16 r.h.s)
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Beyond periodicity

We now use a non periodic coefficient (random checkerboard),

Aε(x , y , ω) = asto
(x
ε
,
y

ε
, ω
)

=

∑
k∈Z2

Xk(ω)1k+Q(x , y)

 Id,

with Xk i.i.d random variables such that P(Xk = 4) = P(Xk = 16) = 1
2 .

Figure 5: Two realizations of coefficient Aε.

Our strategy rewrites Iε = inf sup |E(E(Aε(·, ω), f ))−E(A, f )|. Confidence intervals are computed from 40 realizations of the

expectation (itself computed with a Monte Carlo method using 40 realizations of the coefficient asto).
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Consistency with homogenization theory
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Figure 6: Error between the homogenized coefficient A? and the effective
coefficient Aε as a function of ε.
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Beyond periodicity and the regime of separated scales

2 · 10−2 4 · 10−2 6 · 10−2 8 · 10−2 0.1

1

2

3

4

5

·10−2

ε

Aε
A?

Figure 7: Error
supf∈VQ

‖E(uε(f ,ω))−u(Aε,P ,f )‖L2(Ω)

‖E(uε(f̄ ,ω))‖L2(Ω)

as a function of ε. (Aε is

computed with P � Q = 16 r.h.s)
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Perturbative approach

In some situations, we may initially know that Aε is close to a reference
coefficient A0

ε, and therefore that the coefficient A? we are looking for is
close to a reference coefficient A0.

To take into account such information, we look for an effective coefficient
in the form

A = A0 + ηB (11)

and assume A0 and η are known (η may represent the probability of defect
in a material4).
For such A, we have the perturbative development

E(A, f ) ≈ E(A0, f ) + η
∑
ij

B ij

ˆ
Ω
f vij(A0, f ). (12)

with vij depending only on A0 and f .

4
see e.g. A. Anantharaman, C. Le Bris, MMS, 2011.
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Linearization through a perturbative approach

The problem rewrites

inf
A=A0+ηB∈Rd×d

sup
‖f ‖L2(Ω)=1

E(Aε, f )− E(A0, f )− η
∑
ij

B ij

ˆ
Ω
f vij(A0, f )

2

An advantage of this formulation is that the functional to optimize is
quadratic in B in contrast to the previous formulation.

This significantly reduces the computational costs provided the offline
resolution of P × d(d+1)

2 PDE to identify vij(A0, fp).

Simon Ruget (ENPC & Inria) Inverse Multiscale Problems May 2024 21 / 25



Computational Procedure

Offline: Precompute vij(A0, fp).
Online: Given an iterate A

n
= A0 + ηB

n
:

À Define f n, the argsup to

sup
‖f ‖L2(Ω)=1

(E(Aε, f )− E(A0, f )− η
∑
ij

B ij

ˆ
Ω
fvij(A0, f ))2

In practice, supf∈L2(Ω) → supf∈VP
with P ≈ 3 r.h.s.

À Define A
n+1

= A0 + ηB
n+1

, the optimizer to

inf
A=A0+ηB

(E(Aε, f
n)− E(A0, f

n)− η
∑
ij

B ij

ˆ
Ω
f nvij(A0, f

n))2

In practice, we perform a gradient descent. The gradient can be expressed

with the quantity computed offline, hence no additionnal costs.

In practice, we need more iterations (Niter ≈ 104), but each iteration is
essentially for free (no PDE to solve).
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Numerical results

Let us consider a perturbed material

Aε,η(x , y , ω) = Aε(x , y) + bη(ω)Cε(x , y)

for which, in each cell of size ε, the probability of a defect from Aε to
Aε + Cε is η.

Figure 8: Coefficient Aε,η with η = 0 (left) and with η = 0.1 (right).
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Recovering Effective Coefficient
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Figure 9: Error between the effective coefficient Aε,η and the homogenized
coefficient A?,η (η = 0.1) as a function of ε.
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Conclusion and ongoing works

Our strategy

aims at determining effective coefficients for multiscale PDEs,

is inspired by homogenization theory and consistent with it
(numerically and theoretically),

can be extended outside the regime of separated scale,

requires few prior information on the system (coarse averages are
sufficient),

can be linearized in a perturbative context (hence reducing the
computationnal cost).

Future works include selection of effective coefficient among a given list
rather than identification.
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