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Inverse problem

Our study focuses on inverse problems for PDEs.
Consider an equation of the type

Lu=Tf.

e Is it possible to reconstruct the operator £ (namely its coefficients)
from the knowledge of some solutions u 7

@ Can other (coarser) observables be used to reconstruct £ ?
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Inverse multiscale problem

Our study focuses on inverse problems for multiscale PDEs:

Lou.=T.

Figure 1: Scheme of a composite material.

Determining the fine-scale structure from measurements is an ill-posed
problem... but identifying effective parameters is possible !
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Homogenization theory as a guideline

Consider the prototypical linear equation oscillating at the small length
scale ¢,

Leu. = —div(A:Vu) = in Q, u. =0 on 09, (1)
with A-(-) = AP®'(-/2) a bounded coercive coefficient.

Homogenization® assesses the existence of a limit equation when & — 0,

Lyu, = —div(AVu,) =fin Q, u, =0 on 02, (2)

with A, an effective constant coefficient.

0 0‘2 0‘4 0‘6 0‘8 1
see e.g. A. Benssoussan, J.-L. Lions, G. Papanicolaou, Asymptotic Analysis for Periodic Structures, 1978.
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Building an effective coefficient

Consider the multiscale diffusion problem (3)
Lou. = —div(A.Vu)=1finQ, u. = 0 on 9. (3)

From the knowledge of observables (to be explicited latter) associated to
solutions . for various r.h.s. f, our aim is to propose a numerical methodology
to build an effective operator £ approaching L..

Our strategy

@ is inspired by homogenization theory,

@ does not rely on classical hypothesis for homogenization (such as
periodicity) which may be too restrictive in practical situations,

@ is valid outside the regime of homogenization (i.e. € — 0),
@ requires only coarse scale prior information about the underlying system,

@ is designed to get satisfying approximation of u. (but not of Vu.).
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Previous work [CRAS2013]?, [COCV2018]?

Idea: For A € ngﬁqd a constant symmetric coefficient, denote 7 = u(A, f)
the solution to

Lu = —div (AVz) = f in Q, u =0 on 0. (4)

The quality of the approximation of £. by £ can be quantified through the
functional

sup  J|lu=(f) — u(A, )|l 2
||f||L2(Q):1

Our strategy consists in minimizing the worst case scenario by looking at
the optimization problem

inf  sup [u(f) — u(A, )l 2@

ZeR;’yﬁf ||f||L2(Q):1

Issue: Using the full solutions u. in the whole domain €2 as observables
is disproportionate to estimate a d x d constant symmetric matrix.

2C. Le Bris, F. Legoll, K. Li, CRAS, 2013.
3C. Le Bris, F. Legoll, S. Lemaire, ESAIM COCV, 2018.
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Exploiting the energy

Coarser observables can be considered, such as the energy

1
E(A, )= / AVu. - Vu, —/ fu.. (5)
2 Ja Q
Homogenization theory guarantees the convergence for energy:
E(A, ) — E(AL, f) in R, (6)
e—0

with 1
E(A,, )= / A Vu, -Vu, —/ fuy,
2 /g Q

and where u, still denotes the solution to

Lou, = —div(AVu) =f inQ, u, = 0 on 0N.
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Our strategy

For A e ]ngfnd a constant symmetric coefficient, denote T = u(A, f) the
solution to

Lu=—div(AVd) =finQ, u=0ondQ. (7)

To assess the quality of the approximation of £. by £, we use the

functional
) Ay s [E(A )~ E(A)
le/ 1 - 11l 2(e) =1

Our strategy consists in minimizing the worst case scenario by looking at
the optimization problem

_inf sup  |E(As, f) — E(A, )]
ARG |Ifll2()=1
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In the limit of separated scales

In the limit of vanishing ¢, the problem leads to the homogenized diffusion
coefficient A,.

l. = inf sup  |E(A,f)—E(A )] (8)

ARG ||Fll,2(0)=1

Proposition (Asymptotic consistency, periodic case)

For any sequence of quasi-minimizer (Zf) o i.e. sequence such that
e>
L < J(AT) < I + err(e), (9)
the following convergence holds:

lim A7 = A,. (10)

e—0

v
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Computational procedure

To sol _
CEYE L= it sup (E(ALF)—E(AF))>.

AERIT |fll2(0)=1
Given some iterate En,
@ Define f", the argsup to
o 2
sup (E(AE, f)— &(A ,f)) .
fost |Ifllzg =1

In practice, supse 2(q) —* SUPrev, On Ve = Span{P r.h.s.}, with P~ 3.
This step requires computing P solutions to a coarse PDE in order to get
the energy 5'(E"7 -). We next solve a P x P eigenvalue problem.

. —n+1 .
@ Define A" , the optimizer to
. — 2

_inf (E(As, M) — E(A, f”)) .

AcRI%
In practice, we perform a gradient descent. The gradient can be expressed
with solutions computed in step @, hence no additionnal costs.

In practice, we perform N = 10 iterations of both steps.

Inverse Multiscale Problems
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Numerical results

We use an alternating direction algorithm in 2D (Q = [0, 1]?) using the
coefficient

c 5 c 12 +2 X (sin(2m £) + sin(27 £))

X i X in(2mw £
Ag(x,y) _ Aper (_ }_/) _ (22+10><(sm(2g5)+sn(2 ) 0 ) ‘

for which

0 11.8312

A~ (19.3378 0 )

Figure 2: Components 11 and 22 of coefficient A..
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Consistency with homogenization theory

10_1 —8— ‘ZE_A*‘
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Figure 3: Error between the homogenized coefficient A, and the effective
coefficient A, as a function of ¢.
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Beyond the regime of separated scales

T

_E_Zs,P
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RGeS e (A P

Figure 4: Error
with P < @ = 16 r.h.s)
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Beyond periodicity

We now use a non periodic coefficient (random checkerboard),

= | Y Xu(w)lkrq(xy) | Id,
kez?

N

Figure 5: Two realizations of coefficient A..
Our strategy rewrites I, = infsup |E(E(A:(-,w), f)) — E(A, f)|. The
expectation is computed from 40 realizations.
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Consistency with homogenization theory

1

| | | | |
2.1072 4-1072 6-1072 8-1072 0.1
&

Figure 6: Eiror between the homogenized coefficient A, and the effective
coefficient A, as a function of ¢.
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Beyond periodicity and the regime of separated scales
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Figure 7: Error
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Conclusion and ongoing works

Our strategy
@ aims at determining effective coefficients for multiscale PDEs,
@ provides an accurate description of u. (not of Vu.),

@ is inspired by homogenization theory and consistent with it
(numerically and theoretically),

@ can be extended outside the regime of separated scale,

@ requires coarse scale prior information on the system.
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