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Inverse problem

Our study focuses on inverse problems for PDEs.
Consider an equation of the type

Lu = f .

Is it possible to reconstruct the operator L (namely its coefficients)
from the knowledge of some solutions u ?

Can other (coarser) observables be used to reconstruct L ?
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Inverse multiscale problem

Our study focuses on inverse problems for multiscale PDEs:

Lεuε = f .

Figure 1: Scheme of a composite material.

Determining the fine-scale structure from measurements is an ill-posed
problem... but identifying effective parameters is possible !
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Homogenization theory as a guideline

Consider the prototypical linear equation oscillating at the small length
scale ε,

Lεuε = −div (Aε∇uε) = f in Ω, uε = 0 on ∂Ω, (1)

with Aε(·) = Aper(·/ε) a bounded coercive coefficient.

Homogenization1 assesses the existence of a limit equation when ε→ 0,

L?u? = −div (A?∇u?) = f in Ω, u? = 0 on ∂Ω, (2)

with A? an effective constant coefficient.
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1
see e.g. A. Benssoussan, J.-L. Lions, G. Papanicolaou, Asymptotic Analysis for Periodic Structures, 1978.
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Building an effective coefficient

Consider the multiscale diffusion problem (3)

Lεuε = −div (Aε∇uε) = f in Ω, uε = 0 on ∂Ω. (3)

From the knowledge of observables (to be explicited latter) associated to
solutions uε for various r.h.s. f , our aim is to propose a numerical methodology
to build an effective operator L approaching Lε.

Our strategy

is inspired by homogenization theory,

does not rely on classical hypothesis for homogenization (such as
periodicity) which may be too restrictive in practical situations,

is valid outside the regime of homogenization (i.e. ε→ 0),

requires only coarse scale prior information about the underlying system,

is designed to get satisfying approximation of uε (but not of ∇uε).
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Previous work [CRAS2013]2, [COCV2018]3

Idea: For A ∈ Rd×d
sym a constant symmetric coefficient, denote u = u(A, f )

the solution to

Lu = −div
(
A∇u

)
= f in Ω, u = 0 on ∂Ω. (4)

The quality of the approximation of Lε by L can be quantified through the
functional

sup
‖f ‖L2(Ω)=1

‖uε(f )− u(A, f )‖L2(Ω)

Our strategy consists in minimizing the worst case scenario by looking at
the optimization problem

inf
A∈Rd×d

sym

sup
‖f ‖L2(Ω)=1

‖uε(f )− u(A, f )‖L2(Ω)

Issue: Using the full solutions uε in the whole domain Ω as observables
is disproportionate to estimate a d × d constant symmetric matrix.

2
C. Le Bris, F. Legoll, K. Li, CRAS, 2013.

3
C. Le Bris, F. Legoll, S. Lemaire, ESAIM COCV, 2018.
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Exploiting the energy

Coarser observables can be considered, such as the energy

E(Aε, f ) =
1

2

ˆ
Ω
Aε∇uε · ∇uε −

ˆ
Ω
fuε. (5)

Homogenization theory guarantees the convergence for energy:

E(Aε, f ) −→
ε→0
E(A?, f ) in R, (6)

with

E(A?, f ) =
1

2

ˆ
Ω
A?∇u? · ∇u? −

ˆ
Ω
fu?,

and where u? still denotes the solution to

L?u? = −div (A?∇u?) = f in Ω, u? = 0 on ∂Ω.
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Our strategy

For A ∈ Rd×d
sym a constant symmetric coefficient, denote u = u(A, f ) the

solution to

Lu = −div
(
A∇u

)
= f in Ω, u = 0 on ∂Ω. (7)

To assess the quality of the approximation of Lε by L, we use the

functional

(((((((((((((((hhhhhhhhhhhhhhh

sup
‖f ‖L2(Ω)=1

‖uε(f )− u(A, f )‖L2(Ω) −→ sup
‖f ‖L2(Ω)=1

|E(Aε, f )− E(A, f )|

Our strategy consists in minimizing the worst case scenario by looking at
the optimization problem

inf
A∈Rd×d

sym

sup
‖f ‖L2(Ω)=1

|E(Aε, f )− E(A, f )|
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In the limit of separated scales

In the limit of vanishing ε, the problem leads to the homogenized diffusion
coefficient A?.

Iε = inf
A∈Rd×d

sym

sup
‖f ‖L2(Ω)=1

|E (Aε, f )− E
(
A, f

)
|. (8)

Proposition (Asymptotic consistency, periodic case)

For any sequence of quasi-minimizer
(
A

#
ε

)
ε>0

, i.e. sequence such that

Iε ≤ Jε(A
#
ε ) ≤ Iε + err(ε), (9)

the following convergence holds:

lim
ε→0

A
#
ε = A?. (10)
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Computational procedure

To solve
Iε = inf

A∈Rd×d
sym

sup
‖f ‖L2(Ω)=1

(
E (Aε, f )− E

(
A, f

))2
.

Given some iterate A
n
,

À Define f n, the argsup to

sup
f s.t. ‖f ‖L2(Ω) = 1

(
E(Aε, f )− E(A

n
, f )
)2

.

In practice, supf∈L2(Ω) → supf∈VP
on VP = Span{P r.h.s.}, with P ≈ 3.

This step requires computing P solutions to a coarse PDE in order to get

the energy E(A
n
, ·). We next solve a P × P eigenvalue problem.

Á Define A
n+1

, the optimizer to

inf
A∈Rd×d

sym

(
E(Aε, f

n)− E(A, f n)
)2

.

In practice, we perform a gradient descent. The gradient can be expressed

with solutions computed in step À, hence no additionnal costs.

In practice, we perform N ≈ 10 iterations of both steps.
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Numerical results

We use an alternating direction algorithm in 2D (Ω = [0, 1]2) using the
coefficient

Aε(x , y) = Aper
(x
ε
,
y

ε

)
=
(

22 + 10 × (sin(2π x
ε

) + sin(2π y
ε

)) 0

0 12 + 2 × (sin(2π x
ε

) + sin(2π y
ε

))

)
.

for which

Figure 2: Components 11 and 22 of coefficient Aε.

A? ≈
(

19.3378 0
0 11.8312

)
.
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Consistency with homogenization theory
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Figure 3: Error between the homogenized coefficient A? and the effective
coefficient Aε as a function of ε.
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Beyond the regime of separated scales
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Figure 4: Error
supf∈VQ

‖uε(f )−u(Aε,P ,f )‖L2(Ω)

‖uε(f̄ )‖L2(Ω)

as a function of ε. (Aε is computed

with P � Q = 16 r.h.s)
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Beyond periodicity

We now use a non periodic coefficient (random checkerboard),

Aε(x , y , ω) = asto
(x
ε
,
y

ε
, ω
)

=

∑
k∈Z2

Xk(ω)1k+Q(x , y)

 Id,

with Xk i.i.d random variables such that P(Xk = 4) = P(Xk = 16) = 1
2 .

Figure 5: Two realizations of coefficient Aε.

Our strategy rewrites Iε = inf sup |E(E(Aε(·, ω), f ))− E(A, f )|. The
expectation is computed from 40 realizations.
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Consistency with homogenization theory
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Figure 6: Error between the homogenized coefficient A? and the effective
coefficient Aε as a function of ε.
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Beyond periodicity and the regime of separated scales
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Figure 7: Error
supf∈VQ

‖E(uε(f ,ω))−u(Aε,P ,f )‖L2(Ω)

‖E(uε(f̄ ,ω))‖L2(Ω)

as a function of ε. (Aε is

computed with P � Q = 16 r.h.s)
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Conclusion and ongoing works

Our strategy

aims at determining effective coefficients for multiscale PDEs,

provides an accurate description of uε (not of ∇uε),

is inspired by homogenization theory and consistent with it
(numerically and theoretically),

can be extended outside the regime of separated scale,

requires coarse scale prior information on the system.
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