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Inverse Problem : A new paradigm

Let Ω be a bounded open of Rd .
Direct problem : For a given operator L and RHS f , find u that satisfies

Lu =
(∑

i ,j

aij(·)∂i ,j +
∑
i

bi (·)∂i + c(·)
)
u = f in Ω,

u = 0 on ∂Ω.

(1)
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Inverse Problem : A new paradigm

Inverse problems

have been widely studied (Calderón problem, 1980)

may involve more complexity (e.g. partial measurements available,
finite number of available measurements, ...).

are (very) HARD to solve ! (existence/uniqueness/stability issues...)
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Multiscale Context

Our study focuses on multiscale systems (e.g. composite materials, lungs).
Such systems naturally leads to ill-posed inverse problems (see [Lions05]).
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Multiscale Context : ill-posed inverse problem

Consider the problem oscillating at the small length scall ε

Lεuε = (−∆ + ε−1V (ε−1·))uε = f in Ω, uε = 0 on ∂Ω,

with potential periodic V such that 〈V 〉 = 0, and RHS f ∈ L2(Ω).

Homogenization theory1 assesses the existence of a limit equation when
ε→ 0.

L?u? = (−∆ + V?)u? = f in Ω, u? = 0 on ∂Ω.

which means uε → u? strongly in L2(Ω) and weakly in H1(Ω) when ε→ 0.
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Multiscale Context : ill-posed inverse problem

Issue : in the limit ε→ 0, the quantity uε is very close to u?, whereas the
operator we seek to reconstruct, Lε, is very different from L?, its
homogenized version.
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Figure: Two similar solutions associated to two very distinct potentials
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An Inverse Multiscale Problem

How to tackle such problems ?

General approach :

Direct Inversion (see [Uhlmann13]),

Perturbation (see [Ammari08]),

Approach based on homogenization (see [Nolen12]):

Features Determination (see [Engquist14]),

Regularization at order 0, identifying effective quantity (see
[Ammari16, Caiazzo20]),

Regularization at order 1, beyond effective quantity : H1

reconstruction (see [Garnier23, LeBris18]).

Inverse Homogenization (see [Cherkaev01])
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Our Approach

Consider the Schrödinger problem (2) involving a periodic potential V :

Lεuε =
(
−∆ + ε−1V

(
ε−1·

))
uε = f in Ω, uε = 0 on ∂Ω. (2)

From the knowledge of solutions uε for various rhs f , our aim is:

1 to propose a numerical methodology to build an effective operator L
approaching Lε with satisfying L2 error on the solutions,

2 improve the approximation induced by L to obtain satisfying H1 error on the
solutions.

Our strategy

is inspired by homogenization theory,

does not rely on classical hypothesis for homogenization (such as
periodicity) which may be too restrictive in practical situations,

can be adapted to a wide range of other elliptic equations (see [LeBris18]),

is valid outside the regime of homogenization (i.e. ε→ 0).
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Recovering an effective potential

Let V ∈ R be a constant potential, and u = u(V , f ) be the solution to (3)
with RHS f ∈ L2(Ω).

Lu =
(
−∆ + V

)
u = f in Ω, u = 0 on ∂Ω. (3)

The quality of the approximation of Lε by L can be quantified through the

functional
sup

‖f ‖L2(Ω)=1

∥∥uε(f )− u(V , f )
∥∥2

L2(Ω)

Hence we can minimize the worst case scenario with the optimization
problem

inf
V∈R

sup
‖f ‖L2(Ω)=1

‖uε(f )− u(V , f )‖2
L2(Ω)

The choice of an L2(Ω) norm is reminescent of the fact that
‖uε − u?‖L2(Ω) tends to 0 with ε.
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Recovering an effective potential

Practical considerations : To recover a quadratic optimization problem
in V , we consider the slightly different problem (4)

Iε = inf
V∈R

sup
‖f ‖L2(Ω)=1

‖(−∆)−1
(
−∆ + V

)
(uε(f )− u(f )) ‖2

L2(Ω). (4)

Theoretical considerations :

Proposition (Asymptotic consistency, periodic case)

Consider the problem (4). In the periodic setting, we have

lim
ε→0

Iε = 0. (5)

Furthermore, for ε > 0 fixed (sufficiently small), there exists a unique

minimizer V
0
ε ∈ R. The following convergence holds :

lim
ε→0

V
0
ε = V?. (6)

Simon Ruget (ENPC & Inria) Inverse Multiscale Problem November 2023 11 / 19



Recovering an effective potential

Practical considerations : To recover a quadratic optimization problem
in V , we consider the slightly different problem (4)

Iε = inf
V∈R

sup
‖f ‖L2(Ω)=1

‖(−∆)−1
(
−∆ + V

)
(uε(f )− u(f )) ‖2

L2(Ω). (4)

Theoretical considerations :

Proposition (Asymptotic consistency, periodic case)

Consider the problem (4). In the periodic setting, we have

lim
ε→0

Iε = 0. (5)

Furthermore, for ε > 0 fixed (sufficiently small), there exists a unique

minimizer V
0
ε ∈ R. The following convergence holds :

lim
ε→0

V
0
ε = V?. (6)

Simon Ruget (ENPC & Inria) Inverse Multiscale Problem November 2023 11 / 19



A consistency result

Let Φε(V ) = sup
‖f ‖L2(Ω)=1

∥∥(−∆)−1
(
−∆ + V

)
(uε(f )− u(f ))

∥∥2

L2(Ω)
.

Lemma

In the periodic setting, we have

lim
ε→0

Φε(V?) = 0.

Lemma

For ε sufficiently small, the functional
Φε is continuous and convex.

−20 −10 0 10 20

0

1

2

3

4

·10−2

V

Φ
ε
(V

)

ε = 0.3
ε = 0.08

Figure: Convexity of Φε.
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Numerical results

We use an alternating direction algorithm in 2D (Ω = [0, 1]2) using the
potential

V (x , y) = π2
√

8 (sin(2πx) + sin(2πy)) .

We approximate the supremum by a maximization over the first
eigenmodes of (−∆)-operator. In practice, a single mode is sufficient in
order to find the single coefficient V .

Figure: Potential V and Oscillating Potential Vε = ε−1V (ε−1·).
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Numerical results
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Figure: Error between the homogenized potential V? and the effective potential
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Numerical results
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Figure: Error sup
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as a function of ε. (V
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Recovering an H1-approximation

In the periodic setting, homogenization theory assesses that uε converges
to u? strongly in L2(Ω), but only weakly in H1(Ω). We wish to recover
within our strategy a satisfying H1(Ω) approximation. The strategy
consisting in considering the problem (7) is a dead-end.

IH
1

ε = inf
V∈R

sup
‖f ‖L2(Ω)=1

‖uε(f )− u(V , f )‖H1(Ω). (7)

How can we go further ?
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Recovering an H1-approximation

An essential tool in homogenization is the corrector. For our Schrödinger
equation (2), it is the periodic solution to (8), denoted w .

∆w = V (8)

Homogenization theory assesses that uε,1 = u?(1 + εw(ε−1·)) is a good
H1 approximation of solution uε. Hence, we have :

∇uε(x) = ∇u?(x) + u?(x)(∇w)
(x
ε

)
+ oL2(ε)

Inspired by this statement, we define C
0
ε, an approximation of (∇w)(ε−1·),

as the minimizer of (9).

I corrε = inf
C∈P0

sup
‖f ‖L2 =1

‖∇uε(f )−∇u(V ε, f )− u(V ε, f )C‖2
L2(Ω). (9)

where u(V ε, f ) is to be understood as an approximation of u?(f ) (which
holds since V ε ≈ V?).
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Numerical results

10−1.4 10−1.2 10−1 10−0.8 10−0.6 10−0.4

10−1.5

10−1

10−0.5

ε

Error Sup H1

y ∝ ε

Figure: H1 maximal error sup
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Future Work

In progress :

Robustness analysis : what happens if the data is
blurred/perturbed/deteriorated/... ?

Exploring other type of data : starting from the knowledge of

macroscopic data
(

e.g. energy

ˆ
Ω
|∇uε|2 + Vεu

2
ε

)
instead of

microscopic ones.

Thank you !
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Supremum or Maximum ?

For small ε, homogenization assesses uε(f )→ u?(f ) in L2(Ω). Hence for
all f ∈ L2(Ω), we have∥∥(−∆)−1

(
−∆ + V

)
(uε(f )− u(f ))

∥∥2

L2(Ω)
→
∥∥(−∆)−1

(
−∆ + V

)
(u?(f )− u(f ))

∥∥2

L2(Ω)︸ ︷︷ ︸
=

ˆ
Ω
HV
? (f ) f

.

The study of HV
? shows that it has the same eigenvalues (in the same

order) as −∆.
Hence the supremum is well approximated by a maximization on the first
eigenmodes :

sup
f ∈L2(Ω)

´
ΩH

V
? (f ) f

‖f ‖2
L2(Ω)

≈ max
f ∈Span(φp)Pp=1

´
ΩH

V
? (f ) f

‖f ‖2
L2(Ω)
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