

Construction of coarse approximations for a Schrödinger problem with highly oscillating potential

Claude Le Bris, Frédéric Legoll, **Simon Ruget**

Forum des Jeunes Mathématicien-nes
November 2023

Outline

1 An inverse multiscale problem

- Reminder about inverse problems
- Homogenization theory
- Our objectives

2 Recovering an effective potential

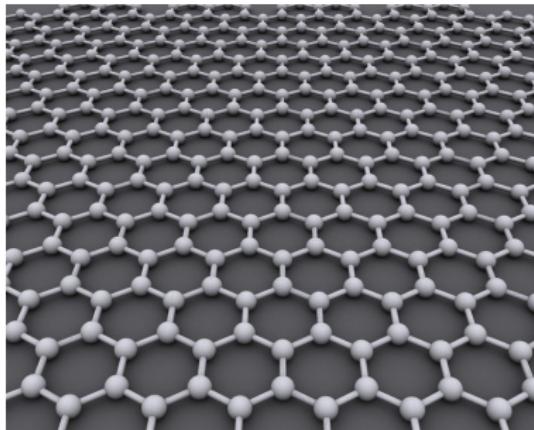
3 Recovering an H^1 -approximation

Inverse Problem : A new paradigm

Let Ω be a bounded open of \mathbb{R}^d .

Direct problem : For a given operator \mathcal{L} and RHS f , find $\textcolor{red}{u}$ that satisfies

$$\left\{ \begin{array}{l} \mathcal{L}\textcolor{red}{u} = \left(\sum_{i,j} a_{ij}(\cdot) \partial_{i,j} + \sum_i b_i(\cdot) \partial_i + c(\cdot) \right) \textcolor{red}{u} = f \quad \text{in } \Omega, \\ \textcolor{red}{u} = 0 \quad \text{on } \partial\Omega. \end{array} \right. \quad (1)$$



Inverse Problem : A new paradigm

Let Ω be a bounded open of \mathbb{R}^d .

Direct problem : For a given operator \mathcal{L} and RHS f , find u that satisfies (1).

Inverse problem : Assume the map $f \rightarrow u$ solution to (1) is known.

"Find" \mathcal{L} such that (1) is satisfied.

$$\begin{cases} \mathcal{L}u = \left(\sum_{i,j} a_{ij}(\cdot) \partial_{i,j} + \sum_i b_i(\cdot) \partial_i + c(\cdot) \right) u = f & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega. \end{cases} \quad (1)$$

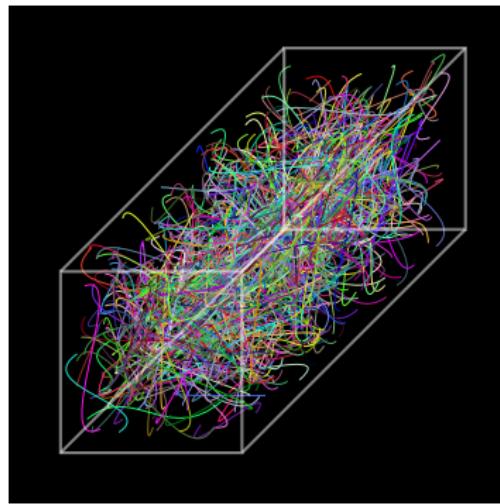
Inverse Problem : A new paradigm

Inverse problems

- have been widely studied ([Calderón problem](#), 1980)
- may involve more complexity (e.g. partial measurements available, finite number of available measurements, ...).
- are **(very) HARD** to solve ! (existence/uniqueness/stability issues...)

Multiscale Context

Our study focuses on **multiscale** systems (e.g. composite materials, lungs). Such systems naturally leads to **ill-posed inverse problems** (see [Lions05]).



Multiscale Context : ill-posed inverse problem

Consider the problem oscillating at the *small length scale ε*

$$\mathcal{L}_\varepsilon u_\varepsilon = (-\Delta + \varepsilon^{-1} V(\varepsilon^{-1} \cdot)) u_\varepsilon = f \text{ in } \Omega, \quad u_\varepsilon = 0 \text{ on } \partial\Omega,$$

with potential **periodic** V such that $\langle V \rangle = 0$, and RHS $f \in L^2(\Omega)$.

¹A. Bensoussan, J.-L. Lions, G. Papanicolaou, *Asymptotic analysis for periodic structures*, 1978

Multiscale Context : ill-posed inverse problem

Consider the problem oscillating at the *small length scale ε*

$$\mathcal{L}_\varepsilon u_\varepsilon = (-\Delta + \varepsilon^{-1} V(\varepsilon^{-1} \cdot)) u_\varepsilon = f \text{ in } \Omega, \quad u_\varepsilon = 0 \text{ on } \partial\Omega,$$

with potential **periodic** V such that $\langle V \rangle = 0$, and RHS $f \in L^2(\Omega)$.

Homogenization theory¹ assesses the existence of a limit equation when $\varepsilon \rightarrow 0$.

$$\mathcal{L}_* u_* = (-\Delta + V_*) u_* = f \text{ in } \Omega, \quad u_* = 0 \text{ on } \partial\Omega.$$

which means $u_\varepsilon \rightarrow u_*$ strongly in $L^2(\Omega)$ and weakly in $H^1(\Omega)$ when $\varepsilon \rightarrow 0$.

¹A. Bensoussan, J.-L. Lions, G. Papanicolaou, *Asymptotic analysis for periodic structures*, 1978

Multiscale Context : ill-posed inverse problem

Consider the problem oscillating at the *small length scale ε*

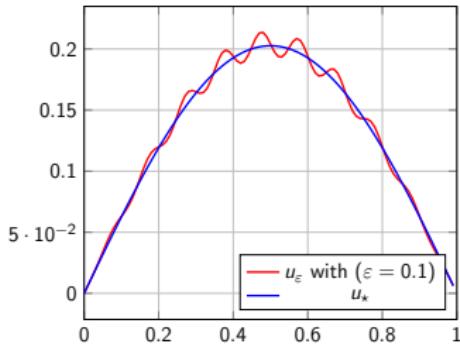
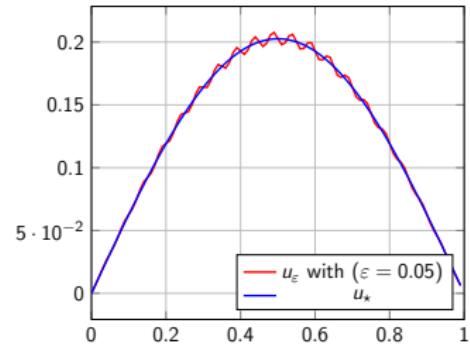
$$\mathcal{L}_\varepsilon u_\varepsilon = (-\Delta + \varepsilon^{-1} V(\varepsilon^{-1} \cdot)) u_\varepsilon = f \text{ in } \Omega, \quad u_\varepsilon = 0 \text{ on } \partial\Omega,$$

with potential **periodic** V such that $\langle V \rangle = 0$, and RHS $f \in L^2(\Omega)$.

Homogenization theory¹ assesses the existence of a limit equation when $\varepsilon \rightarrow 0$.

$$\mathcal{L}_* u_* = (-\Delta + V_*) u_* = f \text{ in } \Omega, \quad u_* = 0 \text{ on } \partial\Omega.$$

which means $u_\varepsilon \rightarrow u_*$ strongly in $L^2(\Omega)$ and weakly in $H^1(\Omega)$ when $\varepsilon \rightarrow 0$.



¹A. Bensoussan, J.-L. Lions, G. Papanicolaou, *Asymptotic analysis for periodic structures*, 1978

Multiscale Context : ill-posed inverse problem

Issue : in the limit $\varepsilon \rightarrow 0$, the quantity u_ε is very close to u_* , whereas the operator we seek to reconstruct, \mathcal{L}_ε , is very different from \mathcal{L}_* , its homogenized version.

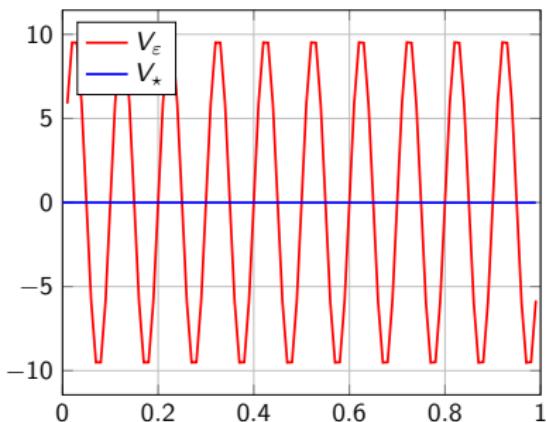
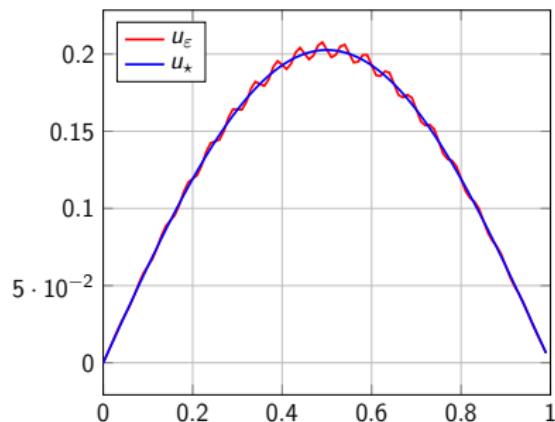


Figure: Two similar solutions associated to two very distinct potentials

An Inverse Multiscale Problem

How to tackle such problems ?

General approach :

- **Direct Inversion** (see [Uhlmann13]),
- **Perturbation** (see [Ammari08]),

Approach based on homogenization (see [Nolen12]):

- **Features Determination** (see [Engquist14]),
- **Regularization at order 0**, identifying effective quantity (see [Ammari16, Caiazzo20]),
- **Regularization at order 1**, beyond effective quantity : H^1 reconstruction (see [Garnier23, LeBris18]).
- **Inverse Homogenization** (see [Cherkaev01])

Our Approach

Consider the Schrödinger problem (2) involving a periodic potential V :

$$\mathcal{L}_\varepsilon u_\varepsilon = (-\Delta + \varepsilon^{-1} V(\varepsilon^{-1} \cdot)) u_\varepsilon = f \text{ in } \Omega, \quad u_\varepsilon = 0 \text{ on } \partial\Omega. \quad (2)$$

From the knowledge of solutions u_ε for various rhs f , our aim is:

- ➊ to propose a numerical methodology to build an effective operator $\bar{\mathcal{L}}$ approaching \mathcal{L}_ε with satisfying L^2 error on the solutions,

Our Approach

Consider the Schrödinger problem (2) involving a periodic potential V :

$$\mathcal{L}_\varepsilon u_\varepsilon = (-\Delta + \varepsilon^{-1} V(\varepsilon^{-1} \cdot)) u_\varepsilon = f \text{ in } \Omega, \quad u_\varepsilon = 0 \text{ on } \partial\Omega. \quad (2)$$

From the knowledge of solutions u_ε for various rhs f , our aim is:

- ➊ to propose a numerical methodology to build an **effective operator** $\bar{\mathcal{L}}$ approaching \mathcal{L}_ε with satisfying L^2 error on the solutions,
- ➋ **improve the approximation** induced by $\bar{\mathcal{L}}$ to obtain satisfying H^1 error on the solutions.

Our Approach

Consider the Schrödinger problem (2) involving a periodic potential V :

$$\mathcal{L}_\varepsilon u_\varepsilon = (-\Delta + \varepsilon^{-1} V(\varepsilon^{-1} \cdot)) u_\varepsilon = f \text{ in } \Omega, \quad u_\varepsilon = 0 \text{ on } \partial\Omega. \quad (2)$$

From the knowledge of solutions u_ε for various rhs f , our aim is:

- ➊ to propose a numerical methodology to build an **effective operator** $\bar{\mathcal{L}}$ approaching \mathcal{L}_ε with satisfying L^2 error on the solutions,
- ➋ **improve the approximation** induced by $\bar{\mathcal{L}}$ to obtain satisfying H^1 error on the solutions.

Our strategy

- is inspired by homogenization theory,
- does not rely on classical hypothesis for homogenization (such as periodicity) which may be too restrictive in practical situations,
- can be adapted to a wide range of other elliptic equations (see [LeBris18]),
- is valid outside the regime of homogenization (i.e. $\varepsilon \rightarrow 0$).

Recovering an effective potential

Let $\bar{V} \in \mathbb{R}$ be a *constant* potential, and $\bar{u} = u(\bar{V}, f)$ be the solution to (3) with RHS $f \in L^2(\Omega)$.

$$\bar{\mathcal{L}}\bar{u} = (-\Delta + \bar{V})\bar{u} = f \text{ in } \Omega, \quad \bar{u} = 0 \text{ on } \partial\Omega. \quad (3)$$

Recovering an effective potential

Let $\bar{V} \in \mathbb{R}$ be a *constant* potential, and $\bar{u} = u(\bar{V}, f)$ be the solution to (3) with RHS $f \in L^2(\Omega)$.

$$\bar{\mathcal{L}}\bar{u} = (-\Delta + \bar{V})\bar{u} = f \text{ in } \Omega, \quad \bar{u} = 0 \text{ on } \partial\Omega. \quad (3)$$

The quality of the approximation of \mathcal{L}_ε by $\bar{\mathcal{L}}$ can be quantified through the functional

$$\sup_{\|f\|_{L^2(\Omega)}=1} \|u_\varepsilon(f) - u(\bar{V}, f)\|_{L^2(\Omega)}^2$$

Recovering an effective potential

Let $\bar{V} \in \mathbb{R}$ be a *constant* potential, and $\bar{u} = u(\bar{V}, f)$ be the solution to (3) with RHS $f \in L^2(\Omega)$.

$$\bar{\mathcal{L}}\bar{u} = (-\Delta + \bar{V})\bar{u} = f \text{ in } \Omega, \quad \bar{u} = 0 \text{ on } \partial\Omega. \quad (3)$$

The quality of the approximation of \mathcal{L}_ε by $\bar{\mathcal{L}}$ can be quantified through the functional

$$\sup_{\|f\|_{L^2(\Omega)}=1} \|u_\varepsilon(f) - u(\bar{V}, f)\|_{L^2(\Omega)}^2$$

Hence we can **minimize** the **worst case scenario** with the optimization problem

$$\inf_{\bar{V} \in \mathbb{R}} \sup_{\|f\|_{L^2(\Omega)}=1} \|u_\varepsilon(f) - u(\bar{V}, f)\|_{L^2(\Omega)}^2$$

The choice of an $L^2(\Omega)$ norm is reminiscent of the fact that $\|u_\varepsilon - u_\star\|_{L^2(\Omega)}$ tends to 0 with ε .

Recovering an effective potential

Practical considerations : To recover a **quadratic** optimization problem in \bar{V} , we consider the slightly different problem (4)

$$I_\varepsilon = \inf_{\bar{V} \in \mathbb{R}} \sup_{\|f\|_{L^2(\Omega)} = 1} \|(-\Delta)^{-1} (-\Delta + \bar{V}) (u_\varepsilon(f) - \bar{u}(f))\|_{L^2(\Omega)}^2. \quad (4)$$

Recovering an effective potential

Practical considerations : To recover a **quadratic** optimization problem in \bar{V} , we consider the slightly different problem (4)

$$I_\varepsilon = \inf_{\bar{V} \in \mathbb{R}} \sup_{\|f\|_{L^2(\Omega)} = 1} \|(-\Delta)^{-1} (-\Delta + \bar{V}) (u_\varepsilon(f) - \bar{u}(f))\|_{L^2(\Omega)}^2. \quad (4)$$

Theoretical considerations :

Proposition (Asymptotic consistency, periodic case)

Consider the problem (4). In the periodic setting, we have

$$\lim_{\varepsilon \rightarrow 0} I_\varepsilon = 0. \quad (5)$$

Furthermore, for $\varepsilon > 0$ fixed (sufficiently small), there exists a unique minimizer $\bar{V}_\varepsilon^0 \in \mathbb{R}$. The following convergence holds :

$$\lim_{\varepsilon \rightarrow 0} \bar{V}_\varepsilon^0 = V_\star. \quad (6)$$

A consistency result

Let $\Phi_\varepsilon(\bar{V}) = \sup_{\|f\|_{L^2(\Omega)}=1} \|(-\Delta)^{-1} (-\Delta + \bar{V}) (u_\varepsilon(f) - \bar{u}(f))\|_{L^2(\Omega)}^2$.

Lemma

In the periodic setting, we have

$$\lim_{\varepsilon \rightarrow 0} \Phi_\varepsilon(V_\star) = 0.$$

Lemma

For ε sufficiently small, the functional Φ_ε is continuous and convex.

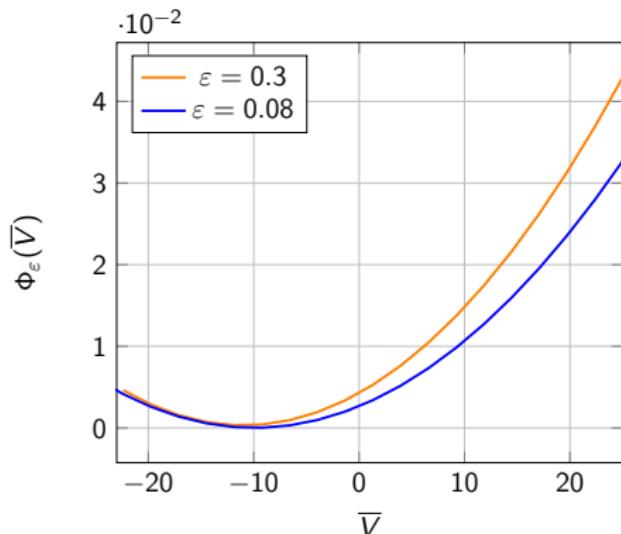


Figure: Convexity of Φ_ε .

Numerical results

We use an alternating direction algorithm in 2D ($\Omega = [0, 1]^2$) using the potential

$$V(x, y) = \pi^2 \sqrt{8} (\sin(2\pi x) + \sin(2\pi y)).$$

We approximate the supremum by a maximization over the first eigenmodes of $(-\Delta)$ -operator. In practice, a *single* mode is sufficient in order to find the *single* coefficient \overline{V} .

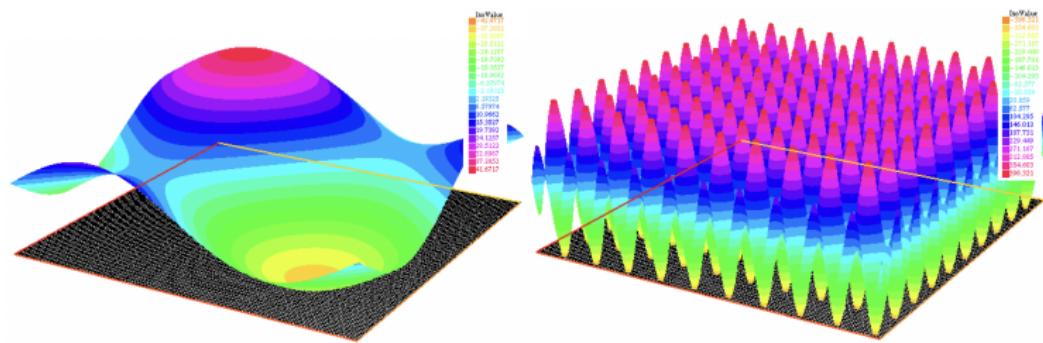


Figure: Potential V and Oscillating Potential $V_\varepsilon = \varepsilon^{-1} V(\varepsilon^{-1} \cdot)$.

Numerical results

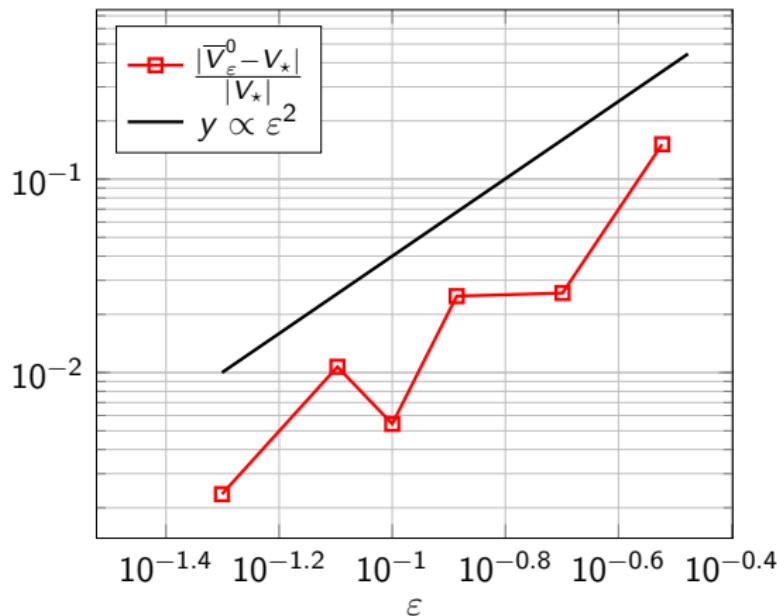


Figure: Error between the homogenized potential V_* and the effective potential \bar{V}_ε^0 as a function of ε .

Numerical results

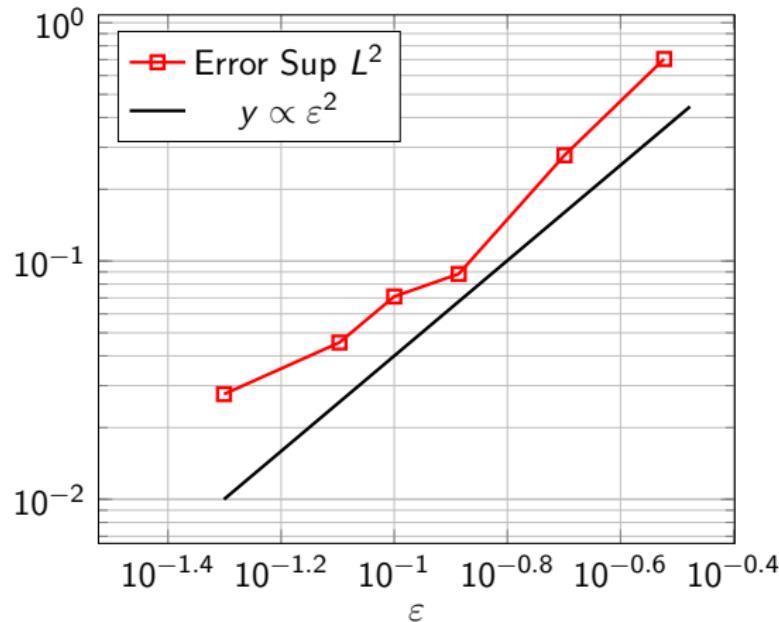


Figure: Error $\sup_{f \in \text{Span}_{1 \leq p \leq 10}(f_p)} \left(\frac{\|u_\varepsilon(f) - u(\bar{V}_\varepsilon^0, f)\|_{L^2(\Omega)}}{\|u_\varepsilon(f)\|_{L^2(\Omega)}} \right)$ as a function of ε . (\bar{V}_ε^0 computed with $P = 3$)

Recovering an H^1 -approximation

In the periodic setting, homogenization theory assesses that u_ε converges to u_* strongly in $L^2(\Omega)$, but only **weakly in** $H^1(\Omega)$. We wish to recover within our strategy a satisfying $H^1(\Omega)$ approximation. The strategy consisting in considering the problem (7) is a dead-end.

$$I_\varepsilon^{H^1} = \inf_{\bar{V} \in \mathbb{R}} \sup_{\|f\|_{L^2(\Omega)}=1} \|u_\varepsilon(f) - u(\bar{V}, f)\|_{H^1(\Omega)}. \quad (7)$$

How can we go further ?

Recovering an H^1 -approximation

An essential tool in homogenization is the **corrector**. For our Schrödinger equation (2), it is the periodic solution to (8), denoted w .

$$\Delta w = V \tag{8}$$

Recovering an H^1 -approximation

An essential tool in homogenization is the **corrector**. For our Schrödinger equation (2), it is the periodic solution to (8), denoted w .

$$\Delta w = V \tag{8}$$

Homogenization theory assesses that $u_{\varepsilon,1} = u_\star(1 + \varepsilon w(\varepsilon^{-1} \cdot))$ is a good H^1 approximation of solution u_ε . Hence, we have :

$$\nabla u_\varepsilon(x) = \nabla u_\star(x) + u_\star(x) \left(\nabla w \left(\frac{x}{\varepsilon} \right) \right) + o_{L^2}(\varepsilon)$$

Recovering an H^1 -approximation

An essential tool in homogenization is the **corrector**. For our Schrödinger equation (2), it is the periodic solution to (8), denoted w .

$$\Delta w = V \tag{8}$$

Homogenization theory assesses that $u_{\varepsilon,1} = u_*(1 + \varepsilon w(\varepsilon^{-1} \cdot))$ is a good H^1 approximation of solution u_ε . Hence, we have :

$$\nabla u_\varepsilon(x) = \nabla u_*(x) + u_*(x)(\nabla w)\left(\frac{x}{\varepsilon}\right) + o_{L^2}(\varepsilon)$$

Inspired by this statement, we define \bar{C}_ε^0 , an approximation of $(\nabla w)(\varepsilon^{-1} \cdot)$, as the minimizer of (9).

$$I_\varepsilon^{corr} = \inf_{\mathbf{C} \in \mathbb{P}^0} \sup_{\|f\|_{L^2}=1} \|\nabla u_\varepsilon(f) - \nabla u(\bar{V}_\varepsilon, f) - u(\bar{V}_\varepsilon, f) \mathbf{C}\|_{L^2(\Omega)}^2. \tag{9}$$

where $u(\bar{V}_\varepsilon, f)$ is to be understood as an approximation of $u_*(f)$ (which holds since $\bar{V}_\varepsilon \approx V_*$).

Numerical results

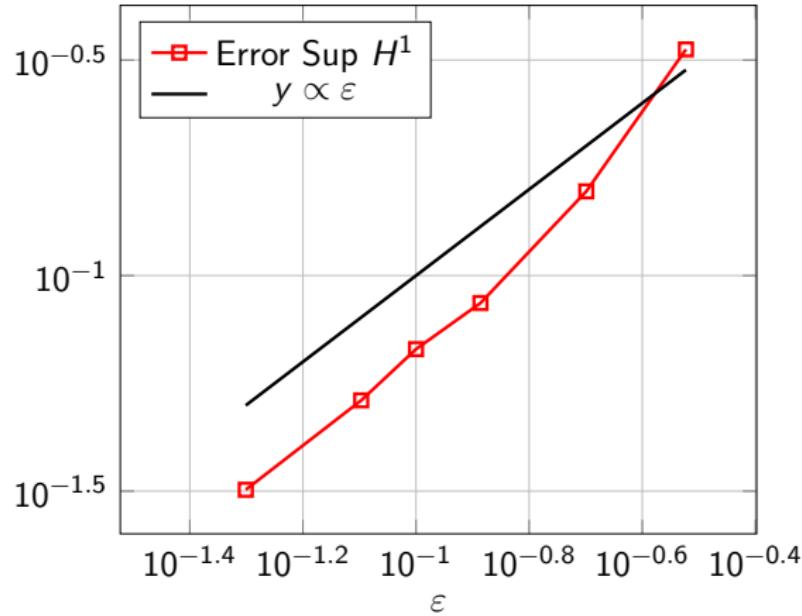


Figure: H^1 maximal error $\sup_{f \in \text{Span}_{1 \leq p \leq 10}(f_p)} \left(\frac{\|\nabla u_\varepsilon(f) - \nabla u(\bar{V}_\varepsilon^0, f) - u(\bar{V}_\varepsilon^0, f) \bar{C}_\varepsilon^0\|_{L^2(\Omega/\partial\Omega)}}{\|\nabla u_\varepsilon(f)\|_{L^2(\Omega/\partial\Omega)}} \right)$ as a function of ε . (\bar{V}_ε^0 and \bar{C}_ε^0 computed with $P = 3$)

Future Work

In progress :

- Robustness analysis : what happens if the data is blurred/perturbed/deteriorated/... ?
- Exploring other type of data : starting from the knowledge of macroscopic data (e.g. energy $\int_{\Omega} |\nabla u_{\varepsilon}|^2 + V_{\varepsilon} u_{\varepsilon}^2$) instead of microscopic ones.

Thank you !

References

- H. Ammari, *An introduction to mathematics of emerging biomedical imaging*, Springer, Vol. 62., 2008.
- H. Ammari, J. Garnier, L. Giovangigli, W. Jing, J. Seo, *Spectroscopic imaging of a dilute cell suspension*, Journal de Mathématiques Pures et Appliquées 105, 2016.
- A. Caiazzo, R. Maier, and D. Peterseim *Reconstruction of quasi-local numerical effective models from low-resolution measurements*, Journal of Scientific Computing, 2020.
- E. Cherkaev, *Inverse homogenization for evaluation of effective properties of a mixture*, Inverse Problems, 2001.
- B. Engquist, and C. Frederick, *Numerical methods for multiscale inverse problems*, ArXiv preprint, 2014.
- J. Garnier, L. Giovangigli, Q. Goepfert, and P. Millien, *Scattered wavefield in the stochastic* ArXiv preprint, 2023.

References

- C. Le Bris, F. Legoll, and K. Li, *Coarse approximation of an elliptic problem with highly oscillating coefficients*, Comptes Rendus Mathématique, 2013.
- C. Le Bris, F. Legoll, and S. Lemaire, *On the best constant matrix approximating an oscillatory matrix-valued coefficient in divergence-form operators*, ESAIM: Control, Optimisation and Calculus of Variations, 2018.
- J.-L. Lions, *Some aspects of modelling problems in distributed parameter systems*, Springer, 2005.
- J. Nolen, G.A. Pavliotis, and A.M. Stuart, *Multiscale modelling and inverse problems*, Numerical analysis of multiscale problems, Springer, 2012.
- G. Bal, and G. Uhlmann, *Reconstruction of Coefficients in Scalar Second Order Elliptic Equations from Knowledge of Their Solutions*, Communications on Pure and Applied Mathematics, 2013.

Supremum or Maximum ?

For small ε , homogenization assesses $u_\varepsilon(f) \rightarrow u_*(f)$ in $L^2(\Omega)$. Hence for all $f \in L^2(\Omega)$, we have

$$\|(-\Delta)^{-1}(-\Delta + \bar{V})(u_\varepsilon(f) - \bar{u}(f))\|_{L^2(\Omega)}^2 \rightarrow \underbrace{\|(-\Delta)^{-1}(-\Delta + \bar{V})(u_*(f) - \bar{u}(f))\|_{L^2(\Omega)}^2}_{= \int_{\Omega} \mathcal{H}_*^{\bar{V}}(f) f}.$$

The study of $\mathcal{H}_*^{\bar{V}}$ shows that it has the same eigenvalues (in the same order) as $-\Delta$.

Hence the supremum is well approximated by a maximization on the first eigenmodes :

$$\sup_{f \in L^2(\Omega)} \frac{\int_{\Omega} \mathcal{H}_*^{\bar{V}}(f) f}{\|f\|_{L^2(\Omega)}^2} \approx \max_{f \in \text{Span}(\phi_p)_{p=1}^P} \frac{\int_{\Omega} \mathcal{H}_*^{\bar{V}}(f) f}{\|f\|_{L^2(\Omega)}^2}$$