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General introduction



Multiscale systems

Multiscale system are characterized by the presence of multiples scales of interests that
interact or influence one another.

They may be found in various scientific areas: engineering, medicine, physics, ...

airplane wing ~ 10m V.S. carbon fibers ~ 107°m

Figure: Composite material used in the aeronautics industry.
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Multiscale systems

Multiscale system are characterized by the presence of multiples scales of interests that
interact or influence one another.

They may be found in various scientific areas: engineering, medicine, physics, ...

5

bridge ~ 10°m v.s. mineral aggregate ~ 10™’m

Figure: Concrete: a multiscale material.
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Inverse multiscale problems

e Consider the problem

—div (A:Vu:) = fin Q,
u. = g on 09,
where A, is oscillating at a small length scale e « |€].

e Applications: heat transfer in thermal engineering, (simplification of) elastic problem

in mechanics, ...

Lxd
g
L
B A =0023WmtK!
0O A-=380Wm K™
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Inverse multiscale problems

e Consider the problem
—div(A-Vu:) =fin Q,
u- = g on 0%,

where A is oscillating at a small length scale £ « |Q].

Question

Based on measurements about the system, can A. be reliably reconstructed ? If not,
what coefficients may be 7
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Limited information

Experimental settings:
o few knowledge on microstructure,

@ only couples (configuration, system responses) are available.

Settings with limited information:

@ No assumptions on microstructure (non periodic case, € small but not infinitely

small, ... ),
o Coarse measurements,
@ Noisy measurements,

e Quantitative restrictions (limited budget of measurements).
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lll-posedness

Homogenization (see e.g. [BLP78]"') builds PDE with slowly varying coefficient that
accurately approximate the oscillating PDE.

u: = g

{—div (AcVue) = f

in Q,
on 09.

e—0

{

—div(A.Vu,) = f
Ue =g

in Q,
on 0.

Oscillating System

1Bensoussan, Lions, Papanicolaou, Asymptotic analysis for periodic structures, 1978.
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Selection of approach

e Recovering A.
L. lllposed in general (Lions 2005), unless...

L, strong assumptions on microstructure (Engquist & Frederick 2017, Abdulle & Di
Blasio 2019, Lochner & Peter 2023),

L, availability of fine scale data (Bal & Uhlmann 2013).
o ldentifying the map 7 — u.(f)
L, Effective coefficients (Le Bris & al. 2013, Le Bris & al. 2018).

L, Model calibration (Chung & al. 2019, Peterseim & al. 2020).
L, Operator learning (Stuart & al. 2024).

Issue: how to proceed in contexts of limited information?
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Effective coefficients

Effective coefficients are coefficients varying at the macroscopic scale that encapsulate
the fine-scale features of highly oscillatory coefficients.

Example. Homogenization assesses the existence of an effective coefficient A, such that

Le:f—> u(f) sol. to —div(A:Vu:) = f
i
La, : f—> u.(f) sol. to —div(AVu.) = f

with respect to the L?() norm.
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Effective coefficients

Effective coefficients are coefficients varying at the macroscopic scale that encapsulate
the fine-scale features of highly oscillatory coefficients.

Example. Homogenization assesses the existence of an effective coefficient A, such that

Le:f— ug(f) sol. to —div (AEVUa) =f

i
La, : f—> u.(f) sol. to —div(AVu.) = f

with respect to the L?() norm.
In the periodic case Ac(x) = Aper (%), with Aper Q-periodic:

-1
@ indimension d =1 wv A, = <fo ﬁ) '

o in dimension d > 2 ww A, = [, Aper(Vw + Id) where w is a corrector defined
through a PDE involving Aper.

Simon Ruget (ENPC & Inria) Multiscale Seminar November 21, 2025 8/28



Effective coefficients

Effective coefficients are coefficients varying at the macroscopic scale that encapsulate
the fine-scale features of highly oscillatory coefficients.

Example. Homogenization assesses the existence of an effective coefficient A, such that

Le:f— u(f) sol. to —div(A-Vu.) =f

i

La, i f— u(f) sol. to —div (A Vu,) =f

with respect to the L?(Q) norm.

Two major limitations of homogenization:
@ No formula for A, unless strong assumptions on A, (e.g. periodicity

Ac(x) = Aper(2)).
@ Valid only in the regime of separated scale (i.e. € — 0).
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Overview

Objective

Based on available observables, define an effective coefficient A such that, for any f, the
solution u.(f) to
—div(A:Vu:) =f

are satisfyingly approximated by the solution T = u(A, f) to the coarse problem

—div(AVE) = f.
y
Part | ------ Construct A in the whole set R& ¢
Part Il ------ Identify A in the viccinity of a known coefficient Ao.
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Part |

Effective modeling from boundary agregated measurements
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A first formulation [CRAS2013]?, [COCV2018]3

For any g € [?(8Q), consider the solution u. = u.(g) to
—div(A:Vu) =0in Q, (AcVue) - n= g on 0Q. (1)

2C. Le Bris, F. Legoll, K. Li, CRAS, 2013.
3C. Le Bris, F. Legoll, S. Lemaire, ESAIM COCV, 2018.
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The quality of the effective coefficient A can be quantified through the functional

sup  Ju:(g) - ”(ng)HLZ(Q)~

el 2 ag) =1
The strategy consists in minimizing the worst case scenario by looking at the
optimization problem

inf sup  Juc(g) — u(A, g)l 20

A-mdXd
AR5 gl 2 pg) =1
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A first formulation [CRAS2013]?, [COCV2018]3

For any g € [?(8Q), consider the solution u. = u.(g) to
—div(A:Vu) =0in Q, (AcVue) - n= g on 0Q. (1)

For Ae RZ:9 a constant symmetric coefficient, consider @ = u(A, g) the solution to

sym
—div (AVa) = 0in Q, (AVT) - n = g on Q. (2)

The quality of the effective coefficient A can be quantified through the functional
sup Jue(g) — ”(1 g)HL2(9)~
l&l,2 o0y =1
The strategy consists in minimizing the worst case scenario by looking at the
optimization problem

inf sup  Juc(g) — u(A, g)l 20

A-mdXd
AR5 gl 2 pg) =1

Issue : Using the full solutions u. in the whole domain Q as observables is
disproportionate to estimate a d x d constant symmetric matrix, and irrealistic from an
experimental point of view.

2C. Le Bris, F. Legoll, K. Li, CRAS, 2013.
3C. Le Bris, F. Legoll, S. Lemaire, ESAIM COCV, 2018.
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Practical observables

Only coarser observables are usually acquirable, such as the energy

eheg) =3 [ AVe Vo [ gu@--3 [ gu@. ()

(293

Motivation:
o E(A., g) passes to the homogenized limit:

S(A€7g) :6 g(A*7g) in Ra

where £(A., g) = %fQ ANVu, - Vu, — fmg u, and where u, denotes the
homogenized solution.

o E£(A, g) is an integrated quantity (scalar !), thus it provides no direct insights about
the microscale.
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A new formulation

For Ae ngxmd a constant symmetric coefficient, denote @ = u(A, g) the solution to
—div (AV1) =0in Q, (AVT) - n = g on 0Q.

To assess the quality of the effective coefficient A, we use the functional

) ulAgiig,’ —  sup  |E(A-,g) —E(Ag)”.

&l 2 a0y =1

,j’rJ,LL/:JQT;ﬁL,,,,/

Our strategy consists in minimizing the worst case scenario by looking at the
optimization problem

- inf sup ‘S(Amg) - E(Z, g)lz'
Ae R lgl2e00)=1
a<A< B
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Theoretical analysis

In the limit of vanishing ¢, the problem leads to the homogenized diffusion coefficient as
shown by the following proposition.

IE = _ nf sup !g(AE7g)7g(Z7g)
Ae Rsym g € LZ(aQ)

a<A<Blelizee =1

| 2

Proposition (Asymptotic consistency, periodic case)

S —# .
For any sequence of quasi-minimizer (AE ) , I.e. sequence such that
e>0

le < Je (ZE#) < I + err(e), (4)
the following convergence holds :
Im}) A = A.. (5)
y

Simon Ruget (ENPC & Inria) Multiscale Seminar November 21, 2025 14 /28



Computational procedure

We apply a an iterative algorithm to solve B
inf sup  |E(A-,g) —E(A )]

=< dxd
AeRgnm®  ge1?(09)

a<A<plelpg =1

Given an iterate A,
@ Define g", the argsup to

_ 2
sup (A, 8) —5(A'77g)) ~
g st lel20) =1
In practice, SUPge(2(Q) — SUPgev, ON Vp = Span{P loadings}, with P ~ 3.
This step requires computing P solutions to a coarse PDE in order to get the energy
EA",).
We next solve a P x P eigenvalue problem.
@ Define EHH, the optimizer to
inf (5(A67gn) 7g(za g"))

Ae ]ngﬁ\d

2

In practice, we perform a gradient descent.
The gradient can be expressed with solutions computed in previous step, hence
no additionnal costs.
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Choice of the loadings

We identify P appropriate loadings (gi)1<i<p such that
sup [E(Ac,8) —E(Ag)|~ sup  [E(As,g) —E(A )|

gel2(oQ) g€ Span (g;)

1<i<
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Choice of the loadings

We identify P appropriate loadings (gi)1<i<p such that
sup [E(Ac,8) —E(Ag)|~ sup  [E(As,g) —E(A )|
gel2(09) g€ Span (g;)

1<i<

Rayleigh quotient: we optimize

)

_ .- T
wwp [£(Ace) - A )|~ sup |la8lToTHE
I81,2 00y =1 gel2(o0) Jan g

where
T: g e L?(0Q) — y(u(g)) with u-(g) sol. to (1),

Ty:g e L’(0Q) — y(u(A, g)) with u(A, g) sol. to (2).

Thus, we seek the eigenmode of 7. — T; with largest (unsigned) eigenvalue.
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Choice of the loadings

We identify P appropriate loadings (gi)1<i<p such that
sup [E(Ac,8) —E(Ag)|~ sup  [E(As,g) —E(A )|

gel2(09) g€ Span (g;)

1<i<

Rayleigh quotient: we optimize

wp  |E(Ag)—ERg)| = sup |JmET=-TalE

2 b
I81,2 00y =1 gel2(o0) Jan g

where
T: g e L?(0Q) — y(u(g)) with u-(g) sol. to (1),

Tx:8€ L2(69) — ~v(u(A,g)) with u(A, g) sol. to (2).
Thus, we seek the eigenmode of 7. — T; with largest (unsigned) eigenvalue.
Case of spheric coefficients: it holds that
To—T; — (A=A T

e—0
with 7 : g € L*(8Q) —> ~v(w(g)) where w(g) is solution to
—Aw =0in Q, Vw-n= g on Q.
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)

_ .- T
wwp [£(Ace) - A )|~ sup |la8lToTHE
I81,2 00y =1 gel2(o0) Jan g

where
T: g e L?(0Q) — y(u(g)) with u-(g) sol. to (1),

Tx:8€ L2(69) — ~v(u(A,g)) with u(A, g) sol. to (2).
Thus, we seek the eigenmode of 7. — T; with largest (unsigned) eigenvalue.
Case of spheric coefficients: it holds that
To—T; — (A=A T

e—0
with 7 : g € L*(8Q) —> ~v(w(g)) where w(g) is solution to
—Aw =0in Q, Vw-n= g on Q.

Practical choice: We select the P X Py = w first eigenmodes of 7.
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Numerical results (periodic)

In 2D (Q =]0, 1[?), we consider the coefficient

Ac(x,y) = AP (27 }g’) _ <zz+ 10 x (sin(2m X) + sin(27 L)) 0 ) ’

0 1242 x (sin(2m %) +sin(2r L))

for which

A~ (193378 0
T 0 11.8312) -

® )
coveo®e
Vo000 0OOOG
ER R R T LR RRR
lvoo00OOOOG
2222222
voeeee0O®e

Figure: Components 11 and 22 of coefficient Ac.
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Numerical results (periodic)

A-A, T — e () —u(A8)l 2 g
| \A,|2‘2 Erre,0(A) = SUPsespan(a.....50) (W
I i I T
i 1 05|
L |
0 104
I 103}
1072 = E
F 102
N
107° | 0
N i 0F | | ‘ .
107 107! 0.1 0.2 03 0.4
€ e

Figure: (left) Error between coefficients A. and ZL\/!I,E;,.

(right) Criterion Err. o(A) for A€ {A*,Zg\;,ﬁgi, ,Zyj_—,} (with Q = 11).
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Numerical results (stochastic)

We now use a non periodic coefficient (random checkerboard),
A. = (2, 1w) - Xie(w)1 Id
(Xv.y:w) a 6767(") kéz k(w) k+Q(X7y) )

with X i.i.d random variables such that P(Xk = 71) = P(Xk = 72) = 5 and
(71772) = (47 16)

We have
A. = /7172 Id.
Figure: Two realizations of coefficient Ac.
Our strategy rewrites le = infsup |[E(E (Ag (-, w), f)) — E(A, f)|. Confidence intervals are computed from 40 realizations of the expectation (itself

approximated by its empirical mean using 40 realizations of the coefficient a5t©).
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Numerical results (stochastic)

P 1w ()~ u(A8) |2 g
Err. (A) = SUPzespan(ay.....z0) (W

T T T

0.1 4 025f -
8-1072 . 0.2+ =
6-107 4 01s| }
4.1072 - 01l B

—2
2.10 5.10-2 - i

€ €

Figure: (left) Error between coefficients A, and Zgi.

(right) Criterion Err]f’Q(Z) for Ae {A*,Zgiﬁﬁ,iﬁ} (with Q = 11).
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Noise

Consider a multiplicative Gaussian noise in the energy:

E(Ac,g:0) = (L+on) E(A, g)-

—=— (&% - A"
-e- Cl95%

: : : :
0.02 0.04 0.06 0.08 0.1

o
[AME _ZME |
Figure: Error % as a function of the noise magnitude o (for ¢ = 0.025).
e 2
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Part 1|
Perturbative reconstruction of effective coefficients
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Perturbative reconstruction of effective coefficients

o Assumption: The effective coefficient lies in neighboorhood of a known coefficient Ag.

e Example: Randomly defectuous (periodic) material
Ac (X, w) = AZ(x) + by (w) C2¥(x),
with CP® possibly not negligible, but
Acn = Ao + A1+ o(n),

where A is known (e.g. given as an industrial reference).

ikl
M M
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Perturbative reconstruction of effective coefficients

e Assumption: The effective coefficient lies in neighboorhood of a known coefficient Ao.

e Example: Randomly defectuous (periodic) material
Acin(x,w) = AZ(x) + by (w) C2¥ (),
with CP® possibly not negligible, but
Acy = Ao +nA1L + o(n),
where A is known (e.g. given as an industrial reference).

e Issue: Computing the effective coefficient using previous methods for many realizations
w and different defect rates 17 may end up having a prohibitive computationnal costs...

Question

How can we use the a priori knowledge of Ay to guide and speed up the optimization ? J
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Perturbative development

Consider the problem

—div (A:Vue) = fin Q, and u. = 0 on 09,
and its approximation by
—div (ZVE) =fin €, and u =0 on 00.
Exact | Perturbative expansion
A Ao+ 1B

Simon Ruget (ENPC & Inria)

Multiscale Seminar

November 21, 2025

24/28



Perturbative development

Consider the problem

—div (A:Vue) = fin Q, and u. = 0 on 09,
and its approximation by
—div (ZVE) =fin €, and u =0 on 00.
Exact | Perturbative expansion
A Ao + 1B
u(A, f) uo + nv

where ug = u(Ao, f) and v = v(Ao, B, f) is solution to
—div (A Vv) =div (BVuw) ingQ,
v=0 on 0.
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Perturbative development

Consider the problem
—div (A:Vue) = fin Q, and u. = 0 on 09,
and its approximation by

—div (ZVE) =finQ, and =0 on 00.

Exact Perturbative expansion
A Zo + 77§
u(A,f) uo + nv

where uy = u(Ao, f) and v = v(A, B, f) is solution to

—div (ZOVV) = div (EVUO) in Q,
v=20 on 0.

Linearity implies that v = >, Bjv;(Ao, f) with vj = v;;(Ao, f) solution to

{—div (AVvy) = div(EjVw)  in Q, ®)

vi=0 on 0L2.
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Perturbative development

Consider the problem

—div (A:Vue) = fin Q, and u. = 0 on 09,
and its approximation by
—div (ZVE) =fin €, and u =0 on 00.
Exact Perturbative expansion
A Ao + 1B
(é f) _ uo + nv _
E(A, ) 8(A0,f)+772ij BijFij(Ao, f)

where £(Ao, f) = —1 [, f uo and

]:U (Zm f)

—f/fv,,

2/QaLloaLlo
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Perturbative development

Consider the problem

—div (A:Vue) = fin Q, and u. = 0 on 09,
and its approximation by
—div (ZVE) =fin €, and u =0 on 00.
Exact Perturbative expansion
A Ao+ 1B
u(A, f) _ wtnv
E(A, ) S(AO,f)—I—nZij BijFij(Ao, f)
We formulate the optimization problem
2
inf sup (E(Agm, f)—E(Ao, f) = > [BlyFy(Ao, f)) .
BeRYY, fel?2(), 1<ij<d

a <A+ B <Blflpzq =1
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Implementation aspects

o Offline stage:
o Compute u(Ag, ).
o Compute E(A, f) and Fjj(Ag, f) forany L<i<j<d.

L, computing P ~ 3 solutions to a coarse PDE and P(1 + d(d+1))

domain integrals.

@ Online stage: We apply a gradient descent. Given an iterate B,

o Define ", the argsup to
2

sup E(Ac, ) — E(Ao, ) = Y [B"]; Fij(Ao, f)
st [fl2g) =1 7

In practice, supse;2(q) — SUPrey, on Vp = Span{P loadings}, with P ~ 3.
This step amounts to solving a P x P eigenvalue problem.

o Define it .
B =B —uVgJl(B),

with
2
J(B) = | (A, ") — E(Ao, ") — Y [Bly Fij(Ao, ")
ij

L, no additional computations of coarse PDE !

Simon Ruget (ENPC & Inria) Multiscale Seminar November 21, 2025 25 /28



Numerical results

- Do not damage drastically the quality.
- Reduction of computational costs (by a factor of ~ 80 to 400).

— SUPgeSpan |E(ue, (8))—u(A8) 24
o Errgn( ): gESpan(gy,---.&p) =.m 12(D)

A [E(ue,n @) 2(p)
T T T T T T
350 | - 0.1 Homogenization PU
’ —8— InfSupEnergy e
—8— Perturbation
300 |- 7 9-1072 N
250 |- 1 8-107% )
—&— Homogenization
—8— InfSupEnergy
2001 —‘E— Pertu‘rbatlon | ‘ -‘ 1 7.102F -
0 5.1072 0.1 0.15 0.2 E
n n

Figure: (left) Component 22 for various approximations of the effective coefficient.
(right) Criterion Erer(Z) for different constant coefficients (with Q = 9 and ¢ = 0.025).
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Numerical results

- Do not damage drastically the quality.
- Reduction of computational costs (by a factor of ~ 80 to 400).

— SUPgespan(ey ... .gp) |E(Uz,n () ~u(Ag)l 2 (1)

Q -
A2 Brre(A) = E(un @) 2 (p)
T T T
350 - a
0.35 B
300 - o
03 =
250 1 025+ s
—&— Homogenization L —&— Homogenization
—&— InfSupEnergy —&— InfSupEnergy
—H&— Perturbation —H&— Perturbation Ly
T | 0.2 &I T T | jE—
0 5.1072 0.1 0.15 0.2 0 5.1072 0.1 0.15 0.2
n

Figure: (left) Component 22 for various approximations of the effective coefficient.
(right) Criterion Erer(Z) for different constant coefficients (with Q = 9 and ¢ = 0.1).
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Conclusion and perspectives

Our strategies

@ aim at determining effective approximation for multiscale PDEs through coarse
coefficients,

@ are designed for context with limited information is available,

@ are inspired by homogenization theory and consistent with it (numerically and
theoretically),

@ can be extended outside the regime of separated scale.

Perspectives
@ Application to real experimental data.
@ Extension to non-constant effective coefficients.

e Convergence analysis of A to A,.

Thank you !
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Sketch of proof

Three ingredients:

@ Optimization over compact set S, = A7 converges to Ay up to an extraction.
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Sketch of proof

Three ingredients:

@ Optimization over compact set S, = A7 converges to Ay up to an extraction.
@ Homogenization — &.(g) e E(g) = I —>00 = &.(g) e Eu(g).
e— e— e—

Polarization relation implies that for any f, g € L?(0Q):

/mf u(As,8) = /anf u(Ay, g).

u(As,g) = u(Ay, g) in L2(6Q).

Thus,
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Sketch of proof

Three ingredients:

@ Optimization over compact set S, = A7 converges to Ay up to an extraction.

@ Homogenization = &.(g) e E(g) = I E:»QO = &.(g) e Ex(g).

Polarization relation implies that for any f, g € L?(0Q):

/mf u(As,8) = /anf u(Ay, g).

u(As,g) = u(Ay, g) in L2(6Q).

Thus,

o ldentification of particular couples (f,-,g,-)1<.

i< dld+1) to get

2

A, = Ay
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A different perspective on noise

Motivation: anticipate on reproducibility errors during model deployment.

Idea: treat A as a random field and optimize upon its mean.

Formulation: consider the problem
2

’

_inf sup ‘S(Aa7g) —E(E(A+01,8)))
AESa,8 ge [%(09),

12(00) =
el 1

where 7 is a Gaussian variable.

0.15 F= : : —
—a— A A A v
- k- Cl95%

5.1072

ME

Figure: Error between Zsyg and ZQAE as a function of the noise magnitude o (for ¢ = 0.05).
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Part 11l
Efficient selection of effective coefficients
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Framework

e Setting: we are given
- a list of candidate coefficients A = {Ai, ..., An}.
- a list of admissible loadings F = {fi, ..., fp}.
- a measurement operator O : A x F — Ror L*(Q) (e.g. O(A.,f) = u:(f) or
E(Ac, f)).
e Challenge:

- Expensive measurement costs = budget of Q « P measurements.

- (Unknown) decomposition of F into Fgisc and Fron-disc Such that
card (Fgisc) < card (F),
and for any f € Frondisc and any A, B e A%

[O(A:, f) = O(A, )]0 ~ |O(A:, f) — O(B, f)o.

Objective

Select the coefficient in A that provides the best effective approximation of the
underlying system while simultaneously minimizing the number of measurement
operations O(Ac, f) with f € F.
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Strategy

Iterative algorithm: each step k selects a loading f* in F and update the choice of the
=k
best coefficient A™ in A.
Core components:
@ Discrimination rate: it estimates how a loadings is discriminative w.r.t observable O.

o Effectiveness score: it assesses the quality of a coefficient as an effective coefficient
for the system.
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Strategy

Iterative algorithm: each step k selects a loading f* in F and update the choice of the
best coefficient A" in A.

Core components:
@ Discrimination rate: it estimates how a loadings is discriminative w.r.t observable O.

A B A B _ [o(AH-0@BNlo
A (f) (Z’r%?;(AZErr(A, B,f) | Err(A,B,f) = AN
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Strategy

Iterative algorithm: each step k selects a loading f* in F and update the choice of the

best coefficient A* in A.

Core components:

o Discrimination rate: it estimates how a loadings is discriminative w.r.t observable O.

Ay (f) max Err(A, B, f) Err(A, B, f) = M
(A;B)eA? 10A, )| o

> “(A,f) — Err(B (A f) — oG N-0@&NIo
A (f) (zf%?é}z |Ert(A, f) — Ert*(B,f)| | Er“(Af) = ol
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Strategy

Iterative algorithm: each step k selects a loading f* in F and update the choice of the
best coefficient A" in A.

Core components:

@ Discrimination rate: it estimates how a loadings is discriminative w.r.t observable O.
7B 7B _ oA H-0(B.f]o
Aq(f) (Z2?242Err(A. B, f) Err(A, B, f) = AN e
A5(F) max |Er*(A, f) — Ert*(B, f) Ert“(A, f) = —HO(ZK'kaaﬂuo
! (Z.B):;Az OA™,N)|o
A(F) max |Err.(A, f) — Erro(B,f)| | Err-(A,f)
(Z,E)EAZ

_ 10(A.N-0ANIo
[0(A.Hlo
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Strategy

Iterative algorithm: each step k selects a loading f* in F and update the choice of the
best coefficient A" in A.

Core components:

@ Discrimination rate: it estimates how a loadings is discriminative w.r.t observable O

A B A B f) = [OAN_0BNH]o
Aq(f) (Z%w?:AQErr(A. B,f) Err(A, B, ) = 2G5
Aé(f) max ‘Errk(Z, f)fErrk(’E. f) Errk(Z, f) = w
" | (AB)ea? ’ O@A o
As(f) (Z.rgiiﬁ Erro(Af) = Errc(B.f)| | Erre(A f) = W

o Effectiveness score: it assesses the quality of a coefficient as an effective coefficient
for the system.
L eg.

k -
A) = Err.(A, ).
VA = max  Erre(Af)
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Strategy

Selection algorithm

Initialization:
Select f' € F by solving

a_ |O(A, f) = O(B, o
= argmax _max = .
feF (A,B)eA2 |O(A, f)|lo

Iterate k:
@ Compute discrimination rate AX(f) for any f in F* = F\{fP}p=1... k-1.
Q Select
¥ e argmax A*(f).
feFk
© Measure O(Ae, f¥).

@ Define the effective coefficient
Ale argmin 7" (A).
Ac A
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Numerical results

25 p—y
- Microstructure. Consider 20
. 27X .
7 + y2sin(—=) if x € Dy, 15
A:(x) = €

Y3 if xe D2. 10

with
Y3 = ax 5

the limit in the sense of homogenization of
X =1+ T2 sin(”TX). 0.2 0.4 0.6 0.8 1

Figure: Coefficient Ac with € = 0.01.
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Numerical results

- Microstructure.
- Set F. Consider

fo= ]].(nﬁlyﬁ)
and
Fonc
{f, s.t. Supp(f,) < D1}
F = U

{fs s.t. Supp(fy) < D»}.

Fnon-disc

Simon Ruget (ENPC & Inria)

Multiscale Seminar

— f e Faisc
—— f € Fron-disc

0.2 0.4 0.6 0.8

Figure: Admissible loadings.
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Numerical results

Microstructure.
Set F.
Set A. Consider

_ Alifx <02,
AX) =4 _,
A if x> 0.2

L=l —2
with A" and A are constants.

Simon Ruget (ENPC & Inria)

Multiscale Seminar

@l >

0.4 0.6 0.8

Figure: Effective coefficients.
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Numerical results: case 1

251 =
. — 7
Setting: —A
207 —
— —7
.A1 = {Ao = (a*, 3*), 15 —A
A1 = (0.953*, a*), 10 FRha
Ay = (0.9a., a.), 5
As = (0.853*, a*),
o 0.2 0.4 0.6 08 1
As = (0.8a,, a.)},
and
card (-Fdisc) — —— eps=0.01
— ~0.2. —
card (.7:) 00004 | — looos
- loooa
000034 ___
0003
0.0002 o
j0002
0.0001 4
001
0.0000 A {0000

000 025 050 075 100 000 025 050 075 100
x
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Numerical results: case 1

Setting:
Step Loadings Best Coefficient
Al = {Ao (ax, ax), 1 fi € Faee Ao
= (0.95a,, a.), 2 f € Fuisc Ao
— (0.9a, a), 3 £z € Fuisc Eo
4 fa € Fuisc Ao
= (0.85a,,  av), 5 f12 € Fron-disc Ao
A; = (0.8a,, a.)}, 6 f13 € Fron-disc Ao
7 fia € Fron-disc Ao
and =
card (]:disc) ~ 0.2 8 f15 € -Fnon—disc éO
card (F) ~ 7 9 | fi6 € Fron-disc Ao
10 | fi7 € Fron-disc Ao
Conclusions: 11 | fig € Frondisc Ao
- A1, Ay and A, perform the same 12 fi9 € Fron-disc Ao
selection. 13 | f20 € Frondisc Ao
- Loadings in Fyic are first identified. 14 | fa € Frondisc Ao
- Ao = (a., a) is the best coefficient at 15 | 2 € Foondic al

each step.
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Numerical results: case 2

251 —
A
20 A
i —7
Setting: 5 _z
—t—t—_%H
A> = A1 U {As = (a., 0.82a.), LR —s
A = (ax, 1.2a.)}, 5
and 0.2 0.4 0.6 0.8 1
card (Fdisc) ~02
card (F) o
—— eps=0.01 —— eps=0.01
— 0 — o0
000051 0jooos 1
— —2
000041 i olooo4 - i
—_—5 —_—5
0.0003 6 0/0003 6
— RHS —— RHS
0.0002 o j0002
0.0001 o 001
0.0000 A {0000

000 025 050 075 100 000 025 050 075 100
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Numerical results: case 2

Setting:

Az = A1 U {As = (ax, 0.82a,),
As = (ax, 1.2a.)},

card (Fdisc)

~ 0.2.
card (F) 0

Conclusions:
- A better replicates A, than A;.

- Ay = (ax, a) is the best coefficient at

each step.

- A selects loadings that do not
precisely discriminate Ag from other
coefficients in A;.

Step A, As
1 fi € Fisc f29 € Fron-disc
2 f2€fdisc fle]:disc
3 f3€fdisc féEIdisc
4 ﬁlefdisc fg‘lej:disc
5 f-29 € ]:non—disc f28 € ]:non—disc
6 f28 € fnon-disc f4 € -Fdisc
7 f12 € ]:non-disc f27 € ]:non-disc
8 f27 € ]:non-disc f12 € Jrnon—disc
9 f26 € ]:non-disc -
10 f25 € ]:non-disc -
11 f4 € Fron-disc -
12 f23 € fnon—disc -
13 f22 € ]:non—disc B
14 f-21 € ]:non-disc -
15 f'20 € fnon-disc -
16 f19 € ]:non-disc -
17 f18 € ]:non-disc -
17 f17 € ]:non-disc -
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Numerical results: case 2

Setting:

Az = A1 U {As = (ax, 0.82a,),
As = (ax, 1.2a.)},

card (Fdisc)

~ 0.2.
card (F) 0

Conclusions:
- A better replicates A, than A;.

- Ay = (ax, a) is the best coefficient at

each step.

- A selects loadings that do not

precisely discriminate Ay from other

coefficients in A;.

Simon Ruget (ENPC & Inria)

Step A, AN
1 fi € Fisc f29 € Fron-disc
2 2 € Fisc f2g € Fron-disc
3 f3 € fdisc f27 € ]:non—disc
4 ﬁl € ]:disc f26 € ]:non—disc
5 f-29 € ]:non—disc f25 € ]:non—disc
6 f28 € fnon—disc f24 € ]:non—disc
7 fl2 € ]:non-disc f23 € ]:non-disc
8 f27 € ]:non-disc f22 € Jrnon—disc
9 f26 € ]:non-disc f21 € -Fnon—disc
10 | f5 € Frondisc | F0 € Frondisc
11 f24 € fnon—disc f19 € fnon—disc
12 f23 € ]:non—disc f18 € ]:non—disc
13 62 € ]:non—disc f17 € ]:non—disc
14 f-21 € ]:non—disc flﬁ € ]:non—disc
15 f'20 € fnon-disc f15 € ]:non-disc
16 fl9 € ]:non-disc fl4 € -Fnon»disc
17 f18 € ]:non-disc f13 € Jrnon—disc
17 f17 € ]:non-disc ﬂ € ]:non-disc
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Work with A. Cohen.
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