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General introduction
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Multiscale systems

Multiscale systems are characterized by the presence of several scales of interest that
interact or influence one another.

They may be found in various scientific areas: engineering, biology, physics, ...

airplane wing « 10m v.s. carbon fibers « 10´6m

Figure: Composite material used in the aeronautics industry.
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Multiscale systems

Multiscale systems are characterized by the presence of several scales of interest that
interact or influence one another.

They may be found in various scientific areas: engineering, biology, physics, ...

bridge « 103m v.s. mineral aggregate « 10´5m

Figure: Concrete: a multiscale material.
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Approximation of multiscale PDE

‚ Consider the problem
´div pAε∇uεq “ f in Ω,

where Aε is oscillating at a small length scale ε ! |Ω|.

‚ Applications: heat transfer in thermal engineering, (simplification of) elastic problem
in mechanics, ...
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‚ Consider the problem
´div pAε∇uεq “ f in Ω,

where Aε is oscillating at a small length scale ε ! |Ω|.

‚ Applications: heat transfer in thermal engineering, (simplification of) elastic problem
in mechanics, ...

Objective

Based on measurements about the system, construct an approximation of the mapping

Lε : f Ñ uεpf q.
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Limited information

Experimental settings:

little knowledge on microstructure.

availability of couples pconfiguration, system responseq.

Settings with limited information:

No assumptions on microstructure (non periodic case, ε small but not infinitely
small, ...).

Qualitative restrictions (coarse measurements, noisy measurements, ...).

Quantitative restrictions (limited budget of measurements).
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Ill-posedness of inverse multiscale problems

It is well known that identifying Aε from measurements is an ill-posed problem.

Homogenization (see e.g. [BLP78]1) builds PDE with slowly varying coefficients that
accurately approximate the oscillating PDE.

#

´div pAε∇uεq “ f in Ω,

uε “ 0 on BΩ.
loooooooooooooooooooomoooooooooooooooooooon

Oscillating System

ÝÑ
εÑ0

#

´div pA‹∇u‹q “ f in Ω,

u‹ “ 0 on BΩ.
loooooooooooooooooooomoooooooooooooooooooon

Homogenized System

1Bensoussan, Lions, Papanicolaou, Asymptotic analysis for periodic structures, 1978.
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?

uε
u‹

1Bensoussan, Lions, Papanicolaou, Asymptotic analysis for periodic structures, 1978.

Simon Ruget (ENPC & Inria) PhD Defense December 2, 2025 6 / 32



Different approaches

‚ Recovering Aε

ë Illposed in general (Lions 1976), unless...

ë strong assumptions on microstructure (Engquist & Frederick 2017, Abdulle & Di
Blasio 2019, Lochner & Peter 2023),

ë availability of fine scale data (Bal & Uhlmann 2013).

‚ Identifying the map f Ñ uεpf q

ë Effective coefficients (Nolen & Papanicolaou 2009, Le Bris & al. 2018).

ë Model calibration (Chung & al. 2019, Peterseim & al. 2020).

ë Operator learning (Stuart & al. 2024).

Issue: how to proceed in contexts of limited information?
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Effective coefficients

Effective coefficients are coefficients varying at the macroscopic scale that encapsulate
the fine-scale features of highly oscillatory coefficients.

Example. Homogenization assesses the existence of an effective coefficient A‹ such that

Lε : f ÝÑ uεpf q sol. to ´div pAε∇uεq “ f

ε
Ñ

0
Ý
Ñ

LA‹ : f ÝÑ u‹pf q sol. to ´div pA‹∇u‹q “ f

with respect to the norm LpL2
pΩqq.
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Lε : f ÝÑ uεpf q sol. to ´div pAε∇uεq “ f

ε
Ñ

0
Ý
Ñ

LA‹ : f ÝÑ u‹pf q sol. to ´div pA‹∇u‹q “ f

with respect to the norm LpL2
pΩqq.

In the periodic case Aεpxq “ Aper

`

x
ε

˘

, with Aper Q-periodic:

A‹ “

ˆ
Q

Aperp∇w ` Idq,

where w is a corrector defined through a PDE involving Aper.

In particular, in dimension d “ 1, it holds that A‹ “
´´

Q
1

Aper

¯´1

.
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Effective coefficients

Effective coefficients are coefficients varying at the macroscopic scale that encapsulate
the fine-scale features of highly oscillatory coefficients.

Example. Homogenization assesses the existence of an effective coefficient A‹ such that

Lε : f ÝÑ uεpf q sol. to ´div pAε∇uεq “ f

ε
Ñ

0
Ý
Ñ

LA‹ : f ÝÑ u‹pf q sol. to ´div pA‹∇u‹q “ f

with respect to the norm LpL2
pΩqq.

Two major limitations of homogenization:

No formulas for A‹ in the general case.

Valid only in the regime of separated scale (i.e. εÑ 0).
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Overview

Objective

Based on available observables, define an effective operator ´div
`

A∇¨
˘

such that, for
any f , the solutions uεpf q to

´div pAε∇uεq “ f

are satisfactorily approximated by the solutions u “ upA, f q to the coarse problem

´div
`

A∇u
˘

“ f .

Part I ¨ ¨ ¨ ¨ ¨ ‚̈ Construct A in the set Rdˆd
sym .

Part II ¨ ¨ ¨ ¨ ¨ ‚̈ Identify A in the vicinity of a known coefficient A0.

Part III ¨ ¨ ¨ ¨ ¨ ‚̈ Select A within a predefined list A “ tA1, ...,ANu.

´

Part IV ¨ ¨ ¨ ¨ ¨ ‚̈ Effective approximation of Schrödinger equation
¯

.
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Part I

Effective modeling from boundary agregated measurements
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A proof of concept rCRAS2013s2, rCOCV2018s3

For any g P L2
0pBΩq, consider the solution uε “ uεpgq with vanishing mean to

´ div pAε∇uεq “ 0 in Ω, pAε∇uεq ¨ n “ g on BΩ. (1)

For A P Rdˆd
sym a constant symmetric coefficient, consider u “ upA, gq the solution to

´ div
`

A∇u
˘

“ 0 in Ω, pA∇uq ¨ n “ g on BΩ. (2)

The quality of the effective coefficient A can be quantified through the functional

sup
}g}

L2pBΩq
“1

}uεpgq ´ upA, gq}L2pΩq.

The strategy consists in minimizing the worst case scenario by looking at the
optimization problem

inf
APRdˆd

sym

sup
}g}

L2pBΩq
“1

}uεpgq ´ upA, gq}L2pΩq.

Issue: Using the full solutions uε in the whole domain Ω as observables is
disproportionate to estimate a d ˆ d constant symmetric matrix, and irrealistic from an
experimental point of view.

2
C. Le Bris, F. Legoll, K. Li, CRAS, 2013.

3
C. Le Bris, F. Legoll, S. Lemaire, ESAIM COCV, 2018.
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Practical observables

Only coarser observables are usually experimentally accessible, such as the energy

EpAε, gq “
1

2

ˆ
Ω

Aε∇uε ¨∇uε ´

ˆ
BΩ

g uεpgq “ ´
1

2

ˆ
BΩ

g uεpgq. (3)

Motivation:

EpAε, gq passes to the homogenized limit:

EpAε, gq ÝÑ
εÑ0

EpA‹, gq in R,

where EpA‹, gq “ 1
2

´
Ω

A‹∇u‹ ¨∇u‹ ´
´
BΩ

g u‹ and where u‹ denotes the
homogenized solution.

EpAε, gq is an integrated quantity at the boundary, thus it presents the
characteristics of a quantity that is experimentally accessible.

EpAε, gq is a scalar, thus it provides no direct insights about the microscale.

Discussions with E. Baranger, L. Chamoin, E. Daghia (LPMS, ENS Paris-Saclay).
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A new formulation

For A P Rdˆd
sym a constant symmetric coefficient, denote u “ upA, gq the solution to

´div
`

A∇u
˘

“ 0 in Ω, pA∇uq ¨ n “ g on BΩ.

To assess the quality of the effective coefficient A, we use the functional

(((((((((((((hhhhhhhhhhhhh

sup
}g}

L2pBΩq
“1

}uεpgq ´ upA, gq}L2pΩq
2
ÝÑ sup

}g}
L2pBΩq

“1

|EpAε, gq ´ EpA, gq|2.

Our strategy consists in minimizing the worst case scenario by looking at the
optimization problem

inf
A P Rdˆd

sym

α ď A ď β

sup
}g}

L2pBΩq
“1

|EpAε, gq ´ EpA, gq|2.
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Theoretical analysis

In the limit of vanishing ε, the problem leads to the homogenized diffusion coefficient as
shown by the following proposition.

Iε “ inf
A P Rdˆd

sym

α ď A ď β

sup
}g}

L2pBΩq
“1

ˇ

ˇEpAε, gq ´ EpA, gq
ˇ

ˇ

2

looooooooooooooooooooomooooooooooooooooooooon

JεpAq

Proposition (Asymptotic consistency, periodic case)

For any sequence of quasi-minimizers
´

A
#
ε

¯

εą0
, i.e. sequence such that

Iε ď JεpA
#
ε q ď Iε ` errpεq,

the following convergence holds:

lim
εÑ0

A
#
ε “ A‹. (4)
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Sketch of proof

Three ingredients:

Optimization over compact set Sα,β ùñ A
#
ε converges to A# up to an extraction.

Homogenization ùñ Eεpgq Ñ
εÑ0

E‹pgq ùñ Iε Ñ
εÑ0

0 ùñ Eεpgq Ñ
εÑ0

E#pgq.

Polarization relation implies that for any f , g P L2
0pBΩq:

ˆ
BΩ

f upA‹, gq “

ˆ
BΩ

f upA#, gq.

Thus,
upA‹, gq “ upA#, gq in L2

pBΩq. (5)

Use that A‹,A# are constant coefficients and exploit (5) evaluated at particular
loadings pgi q1ďiď

dpd`1q
2

to conclude that

A‹ “ A#.
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Computational procedure

We apply an iterative algorithm to solve
inf

A P Rdˆd
sym

α ď A ď β

sup
}g}

L2pBΩq
“1

|EpAε, gq ´ EpA, gq|2.

Given an iterate A
n
,

1 Define gn, the argsup to

sup
g s.t. }g}

L2pBΩq
“ 1

´

EpAε, gq ´ EpAn
, gq

¯2

.

In practice, supgPL2
0pΩq

Ñ supgPVP
on VP “ SpantP loadingsu, with P « dpd`1q

2
.

This step requires computing P solutions to a coarse PDE in order to get the energy

EpAn
, ¨q.

We next solve a P ˆ P eigenvalue problem.

2 Define A
n`1

, the optimizer to

inf
APRdˆd

sym

`

EpAε, gn
q ´ EpA, gn

q
˘2
.

In practice, we perform a gradient descent together with a line search.

The gradient can be expressed with solutions computed in previous step, hence

no additionnal costs.
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Choice of the loadings

We identify P appropriate loadings pgi q1ďiďP such that

sup
gPL2

0pBΩq

ˇ

ˇEpAε, gq ´ EpA, gq
ˇ

ˇ « sup
gP Span

1ďiďP
pgi q

ˇ

ˇEpAε, gq ´ EpA, gq
ˇ

ˇ .

Rayleigh quotient: we optimize

sup
}g}

L2pBΩq
“1

ˇ

ˇEpAε, gq ´ EpA, gq
ˇ

ˇ “ sup
gPL2

0pBΩq

ˇ

ˇ

ˇ

ˇ

´
BΩ

g pTε ´ TAq g´
BΩ

g 2

ˇ

ˇ

ˇ

ˇ

,

where
Tε : g P L2

0pBΩq ÝÑ uεpgq|BΩ with uεpgq sol. to (1),

TA : g P L2
0pBΩq ÝÑ upA, gq|BΩ with upA, gq sol. to (2).

Thus, we seek the eigenmode of Tε ´ TA with largest eigenvalue in absolute value.

Case of spheric, periodic coefficients: it holds that

Tε ´ TA ÝÑ
εÑ0

pA‹ ´ Aq T

with T : g P L2
0pBΩq ÝÑ wpgq|BΩ where wpgq is solution to

´∆w “ 0 in Ω, ∇w ¨ n “ g on BΩ.

Practical choice: We select the P Ç Pd “
dpd`1q

2
first eigenmodes of T .
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Numerical results (periodic)

In 2D (Ω “s0, 1r2), we consider the coefficient

Aεpx , yq “ Aper
´x

ε
,

y

ε

¯

“

´

22 ` 10 ˆ psinp2π x
ε
q ` sinp2π

y
ε
qq 0

0 12 ` 2 ˆ psinp2π x
ε
q ` sinp2π

y
ε
qq

¯

,

for which

A‹ «

ˆ

19.3378 0
0 11.8312

˙

.

Figure: Components 11 and 22 of coefficient Aε.
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Numerical results (periodic)

10´2 10´1

10´3

10´2

10´1

ε

|A´A‹|2
|A‹|2

A
ME

0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

0.5

ε

Errε,QpAq “ supgPSpanpg1,...,gQ q

ˆ

}uεpgq´upA,gq}
L2pΩq

}uεpgq}L2pΩq

˙

A‹

A
ME

A
MS

A
MV

Figure: (left) Error between coefficients A‹ and A
ME
ε,P .

(right) Criterion Errε,QpAq for A P tA‹,A
MV
ε,P ,A

ME
ε,P , ,A

MS
ε,Pu (with Q “ 11).
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Numerical results (stochastic)

We now use a non periodic coefficient (random checkerboard),

Aεpx , y , ωq “ asto
´x

ε
,

y

ε
, ω

¯

“

˜

ÿ

kPZ2

Xkpωq1k`Q

´x

ε
,

y

ε

¯

¸

Id,

with Xk i.i.d random variables such that PpXk “ γ1q “ PpXk “ γ2q “
1
2

and
pγ1, γ2q “ p4, 16q.
We have

A‹ “
?
γ1γ2 Id.

Figure: Two realizations of coefficient Aε.
Our strategy rewrites Iε “ inf sup |EpEpAεp¨, ωq, f qq ´ EpA, f q|. Confidence intervals are computed from 40 realizations of the expectation (itself

approximated by its empirical mean using 40 realizations of the coefficient asto).
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Numerical results (stochastic)

5 ¨ 10´2 0.1 0.15 0.2 0.25

2 ¨ 10´2

4 ¨ 10´2

6 ¨ 10´2

8 ¨ 10´2

0.1

ε

|A´A‹|2
|A‹|2

A
ME
ε,P

CI 95%

5 ¨ 10´2 0.1 0.15 0.2 0.25

5 ¨ 10´2

0.1

0.15

0.2

0.25

ε

ErrEε,QpAq “ supgPSpanpg1,...,gQ q

ˆ

}Epuεpgqq´upA,gq}
L2pΩq

}Epuεpgqq}L2pΩq

˙

A‹
CI 95%

A
ME
ε,P

CI 95%

A
MS
ε,P

CI 95%

A
MV
ε,P

CI 95%

Figure: (left) Error between coefficients A‹ and A
ME
ε,P .

(right) Criterion ErrEε,QpAq for A P tA‹,A
ME
ε,P ,A

MS
ε,P ,A

MV
ε,Pu (with Q “ 11).
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Noise

Motivation: The value of the energy may not be known exactly.

Formulation: Consider a multiplicative noise in the energy:

EpAε, g ;σq “ p1` σηq EpAε, gq.
where Aε is a deterministic periodic coefficient, and η follows a Gaussian distribution.

Results:

0.02 0.04 0.06 0.08 0.1
0

0.1

0.2

0.3

0.4

0.5

σ

|A
ME
ε,σ ´ A

ME
ε |2 { |A

ME
ε |2

CI 95%

Figure: Error
|A

ME
ε,σ´A

ME
ε |2

|A
ME
ε |2

as a function of the noise magnitude σ (for ε “ 0.025).
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Part II

Perturbative reconstruction of effective coefficients
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Perturbative reconstruction of effective coefficients

• Assumption: The effective coefficient lies in neighboorhood of a known coefficient A0.

• Example: Periodic material with random defect

Aε,ηpx , ωq “ Aper
ε pxq ` bηpωqC

per
ε pxq,

with C per
ε possibly not negligible, but

A‹,η “ A0 ` ηA1 ` opηq,

where A0 is known (e.g. given as an industrial reference).

Simon Ruget (ENPC & Inria) PhD Defense December 2, 2025 24 / 32



Perturbative reconstruction of effective coefficients

• Assumption: The effective coefficient lies in neighboorhood of a known coefficient A0.

• Example: Periodic material with random defect

Aε,ηpx , ωq “ Aper
ε pxq ` bηpωqC

per
ε pxq,

with C per
ε possibly not negligible, but

A‹,η “ A0 ` ηA1 ` opηq,

where A0 is known (e.g. given as an industrial reference).

Simon Ruget (ENPC & Inria) PhD Defense December 2, 2025 24 / 32



Perturbative reconstruction of effective coefficients

• Assumption: The effective coefficient lies in neighboorhood of a known coefficient A0.

• Issue: Computing the effective coefficient using previous methods for many realizations
ω and different defect rates η may lead to prohibitive computational costs...

Question

How can we use the a priori knowledge of A0 to guide and speed up the optimization ?

• Example: Periodic material with random defect
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Perturbative development

Consider the problem

´div pAε∇uεq “ f in Ω, and uε “ 0 on BΩ,

and its approximation by

´div
`

A∇u
˘

“ f in Ω, and u “ 0 on BΩ.

Exact Perturbative expansion

A A0 ` ηB

upA, f q u0 ` ηv

where u0 “ upA0, f q and v “ vpA0,B, f q is solution to
#

´div
`

A0∇v
˘

“ div
`

B∇u0

˘

in Ω,

v “ 0 on BΩ.

Linearity implies that v “
ř

ij B ijvij with vij “ vijpA0, f q solution to
#

´div
`

A0∇vij
˘

“ div pEij∇u0q in Ω,

vij “ 0 on BΩ.
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Implementation aspects

Offline stage:

Compute upA0, f q.

Compute EpA0, f q and Fij pA0, f q for any 1 ď i ď j ď d .

ë computing P « dpd`1q
2

solutions to a coarse PDE and Pp1` dpd`1q
2
q integrals.

Online stage: we apply a gradient descent
Define f n, the argsup to

sup
f s.t. }f }

L2pΩq
“ 1

¨

˝EpAε, f q ´ EpA0, f q ´
ÿ

ij

rB
n
sij Fij pA0, f q

˛

‚

2

.

In practice, supf PL2pΩq Ñ supf PVP
on VP “ SpantP loadingsu, with P « dpd`1q

2
.

This step amounts to solving a P ˆ P eigenvalue problem.
Define

B
n`1

“ B
n
´ µ∇BJ

n
ε pB

n
q

with

Jnε pBq “

¨

˝EpAε, f nq ´ EpA0, f
nq ´

ÿ

ij

rBsij Fij pA0, f
nq

˛

‚

2

.

Observe that Jnε is quadratic.

ë no additional computations of coarse PDE !
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Numerical results

- Preserve the quality of the approximation.
- Reduction of computational costs (by a factor of « 80 to 400).

0 5 ¨ 10´2 0.1 0.15 0.2

200

250

300

350

η

A
22

Homogenization

InfSupEnergy

Perturbation

0 5 ¨ 10´2 0.1 0.15 0.2
4 ¨ 10´2

6 ¨ 10´2

8 ¨ 10´2

0.1

0.12

η

ErrQε,ηpAq “
supgPSpanpg1,...,gP q

}Epuε,ηpgqq´upA,gq}
L2pDq

}Epuε,ηpĝqq}L2pDq

Homogenization

InfSupEnergy

Perturbation

Figure: (left) Component 22 for various approximations of the effective coefficient.

(right) Criterion ErrEε,QpAq for different constant coefficients (with Q “ 9 and ε “ 0.025).
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Part III

Efficient selection of effective coefficients
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Framework

• Setting: we are given

- a list of candidate coefficients A “ tA1, ...,ANu.

- a list of admissible loadings F “ tf1, ..., fPu.

- a measurement operator O : Aˆ F Ñ R or L2
pΩq (e.g. OpAε, f q “ uεpf q or

EpAε, f q).

• Challenge:

- Expensive measurement costs ùñ budget of Q ! P measurements.

- (Unknown) decomposition of F into Fdisc and Fnon-disc such that

card pFdiscq ! card pFq ,

and for any f P Fnon-disc and any A,B P A2,

}OpAε, f q ´OpA, f q}O « }OpAε, f q ´OpB, f q}O.

Objective

Select the coefficient in A that provides the best effective approximation of the
underlying system while simultaneously minimizing the number of measurement
operations OpAε, f q with f P F .

Work inspired by discussions with H. Ammari (ETH Zürich).
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Selection algorithm

Iterative algorithm: each step k selects a loading f k in F and update the choice of the

best coefficient A
k

in A.

Selection algorithm

Iterate k:

1 Compute discrimination rate ∆k
pf q for any f in Fk

“ Fztf p
up“1,...,k´1.

2 Select
f k
P arg max

f PFk

∆k
pf q.

3 Measure OpAε, f k
q.

4 Define the effective coefficient

A
k
P arg min

APA
γk
pAq.

Core components:

Discrimination rate: ∆k estimates how a loadings is discriminative w.r.t O and A.

Effectiveness score : γk assesses the quality of a coefficient as an effective coefficient
for the system.
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Conclusion and perspectives
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Conclusion and perspectives

Our strategies

aim at determining effective approximations for multiscale PDEs through effective
coefficients,

are designed for context where only limited information is available,

are inspired by homogenization theory and consistent with it (numerically and
theoretically),

can be extended outside the regime of separated scale.

Perspectives

Application to real experimental data.

Extension to non-constant effective coefficients.

Convergence analysis of A to A‹.

Convergence analysis of selection algorithm.

Thank you !
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A different perspective on noise

Motivation: anticipate on reproducibility errors during model deployment.

Idea: treat A as a random field and optimize upon its mean.

Formulation: consider the problem

inf
APSα,β

sup
}g}L2pBΩq “ 1

ˇ

ˇ

ˇ
EpAε, gq ´ E

`

EpA` ση, gqq
˘

ˇ

ˇ

ˇ

2

,

where η is a Gaussian variable.

0 1 2 3 4

0

5 ¨ 10´2

0.1

0.15

σ

|A
ME
ε,σ ´ A

ME
ε |2 { |A

ME
ε |2

CI 95%

Figure: Error between A
ME
ε,σ and A

ME
ε as a function of the noise magnitude σ (for ε “ 0.05).
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Convergence analysis

We consider the slightly modified

inf
A P Rdˆd

sym ,

α ďA ď β

ÿ

1ďiďjďd

ˇ

ˇEpAε, gi,jq ´ EpA, gi,jq
ˇ

ˇ ,

where pgi,jq1ďiďjďd are preselected loadings.

For an appropriate choice of loadings pgi,jq1ďiďjďd , it holds that
ˇ

ˇ

ˇ
A

opt
ε ´ A‹

ˇ

ˇ

ˇ
ď Cδpεq,

where δpεq is any function such that

|EpAεq ´ EpA‹q| ď Cδpεq.
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Loading selection

We define

gi,j “

´ei ` ej
2

¯

¨ n,

where pei q1ďiďd is the canonical basis of Rd .

For any A P Rdˆd
sym , the solution to

´div
`

A∇u
˘

“ 0 in Ω,
`

A∇u
˘

¨ n “ gi,j on BΩ.

writes
ui,j “

´

A
´1

ei,j
¯

¨ x .

Thus the energy writes:

EpA, gi,jq “

ˆ
Ω

´

A
´1

ei,j
¯T

looooomooooon

p∇ui,j q
T

A
´

A
´1

ei,j
¯

loooomoooon

∇ui,j

“ |Ω|eT
i,jA

´1
ei,j

Then, we get

}A´ A‹} ď C}A
´1
´ A´1

‹ }

ď C
ÿ

1ďiďjďd

|eT
ij pA

´1
´ A´1

‹ qeij |

ď ...

ď Cδpεq.
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Framework

• Setting: we are given

- a list of candidate coefficients A “ tA1, ...,ANu.

- a list of admissible loadings F “ tf1, ..., fPu.
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Strategy

Iterative algorithm: each step k selects a loading f k in F and update the choice of the

best coefficient A
k

in A.

Core components:

Discrimination rate: it estimates how a loadings is discriminative w.r.t observable O.

Effectiveness score: it assesses the quality of a coefficient as an effective coefficient
for the system.
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,f q}O

∆3pf q max
pA,BqPA2

ˇ

ˇErrεpA, f q ´ ErrεpB, f q
ˇ

ˇ ErrεpA, f q “
}OpAε,f q´OpA,f q}O
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Effectiveness score: it assesses the quality of a coefficient as an effective coefficient
for the system.
ë e.g.

γk
pAq “ max

f Ptf1,...,fku
ErrεpA, f q.
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Strategy

Selection algorithm

Initialization:
Select f 1

P F by solving

f 1
“ arg max

f PF
max

pA,BqPA2

}OpA, f q ´OpB, f q}O
}OpA, f q}O

.

Iterate k:

1 Compute discrimination rate ∆k
pf q for any f in Fk

“ Fztf p
up“1,...,k´1.

2 Select
f k
P arg max

f PFk

∆k
pf q.

3 Measure OpAε, f k
q.

4 Define the effective coefficient

A
k
P arg min

APA
γk
pAq.
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Numerical results

- Microstructure. Consider

Aεpxq “

$

&

%

γ1 ` γ2 sinp
2πx

ε
q if x P D1,

γ3 if x P D2.

with
γ3 “ a‹

the limit in the sense of homogenization of
x ÞÑ γ1 ` γ2 sinp 2πx

ε
q. 0.2 0.4 0.6 0.8 1

5

10

15

20

25
Aε

Figure: Coefficient Aε with ε “ 0.01.
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Numerical results

- Microstructure.
- Set F . Consider

fn “ 1
p n´1

N
, n
N q

and

F “

Fdisc
hkkkkkkkkkkkkkkikkkkkkkkkkkkkkj

tfn s.t. Supppfnq Ă D1u

Y

tfn s.t. Supppfnq Ă D2u
loooooooooooooomoooooooooooooon

Fnon-disc

. 0.2 0.4 0.6 0.8 1

5

10

15

20

25
f P Fdisc

f P Fnon-disc

Figure: Admissible loadings.
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Numerical results

Microstructure.
Set F .
Set A. Consider

Apxq “

#

A
1

if x ă 0.2,

A
2

if x ą 0.2.

with A
1

and A
2

are constants.
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5
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15

20

25
A

B

Figure: Effective coefficients.
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Numerical results: case 1

Setting:

A1 “ tA0 “ pa‹, a‹q,

A1 “ p0.95a‹, a‹q,

A2 “ p0.9a‹, a‹q,

A3 “ p0.85a‹, a‹q,

A4 “ p0.8a‹, a‹qu,

and
card pFdiscq

card pFq « 0.2.

Conclusions:

- ∆1, ∆2 and ∆ε perform the same
selection.

- Loadings in Fdisc are first identified.

- A0 “ pa‹, a‹q is the best coefficient at
each step.
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Numerical results: case 1

Setting:

A1 “ tA0 “ pa‹, a‹q,

A1 “ p0.95a‹, a‹q,

A2 “ p0.9a‹, a‹q,

A3 “ p0.85a‹, a‹q,

A4 “ p0.8a‹, a‹qu,

and
card pFdiscq

card pFq « 0.2.

Conclusions:

- ∆1, ∆2 and ∆ε perform the same
selection.

- Loadings in Fdisc are first identified.

- A0 “ pa‹, a‹q is the best coefficient at
each step.

Step Loadings Best Coefficient

1 f1 P Fdisc A0

2 f2 P Fdisc A0

3 f3 P Fdisc A0

4 f4 P Fdisc A0

5 f12 P Fnon-disc A0

6 f13 P Fnon-disc A0

7 f14 P Fnon-disc A0

8 f15 P Fnon-disc A0

9 f16 P Fnon-disc A0

10 f17 P Fnon-disc A0

11 f18 P Fnon-disc A0

12 f19 P Fnon-disc A0

13 f20 P Fnon-disc A0

14 f21 P Fnon-disc A0

15 f22 P Fnon-disc A0
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Numerical results: case 2

Setting:

A2 “ A1 Y tA5 “ pa‹, 0.82a‹q,

A6 “ pa‹, 1.2a‹qu,

and
card pFdiscq

card pFq « 0.2.

Conclusions:

- ∆2 better replicates ∆ε than ∆1.

- A0 “ pa‹, a‹q is the best coefficient at
each step.

- ∆1 selects loadings that do not
precisely discriminate A0 from other
coefficients in A1.
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Numerical results: case 2

Setting:

A2 “ A1 Y tA5 “ pa‹, 0.82a‹q,

A6 “ pa‹, 1.2a‹qu,

and
card pFdiscq

card pFq « 0.2.

Conclusions:

- ∆2 better replicates ∆ε than ∆1.

- A0 “ pa‹, a‹q is the best coefficient at
each step.

- ∆1 selects loadings that do not
precisely discriminate A0 from other
coefficients in A1.

Step ∆ε ∆2

1 f1 P Fdisc f29 P Fnon-disc

2 f2 P Fdisc f1 P Fdisc

3 f3 P Fdisc f2 P Fdisc

4 f4 P Fdisc f3 P Fdisc

5 f29 P Fnon-disc f28 P Fnon-disc

6 f28 P Fnon-disc f4 P Fdisc

7 f12 P Fnon-disc f27 P Fnon-disc

8 f27 P Fnon-disc f12 P Fnon-disc

9 f26 P Fnon-disc -
10 f25 P Fnon-disc -
11 f24 P Fnon-disc -
12 f23 P Fnon-disc -
13 f22 P Fnon-disc -
14 f21 P Fnon-disc -
15 f20 P Fnon-disc -
16 f19 P Fnon-disc -
17 f18 P Fnon-disc -
17 f17 P Fnon-disc -
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Numerical results: case 2

Setting:

A2 “ A1 Y tA5 “ pa‹, 0.82a‹q,

A6 “ pa‹, 1.2a‹qu,

and
card pFdiscq

card pFq « 0.2.

Conclusions:

- ∆2 better replicates ∆ε than ∆1.

- A0 “ pa‹, a‹q is the best coefficient at
each step.

- ∆1 selects loadings that do not
precisely discriminate A0 from other
coefficients in A1.

Step ∆ε ∆1

1 f1 P Fdisc f29 P Fnon-disc

2 f2 P Fdisc f28 P Fnon-disc

3 f3 P Fdisc f27 P Fnon-disc

4 f4 P Fdisc f26 P Fnon-disc

5 f29 P Fnon-disc f25 P Fnon-disc

6 f28 P Fnon-disc f24 P Fnon-disc

7 f12 P Fnon-disc f23 P Fnon-disc

8 f27 P Fnon-disc f22 P Fnon-disc

9 f26 P Fnon-disc f21 P Fnon-disc

10 f25 P Fnon-disc f20 P Fnon-disc

11 f24 P Fnon-disc f19 P Fnon-disc

12 f23 P Fnon-disc f18 P Fnon-disc

13 f22 P Fnon-disc f17 P Fnon-disc

14 f21 P Fnon-disc f16 P Fnon-disc

15 f20 P Fnon-disc f15 P Fnon-disc

16 f19 P Fnon-disc f14 P Fnon-disc

17 f18 P Fnon-disc f13 P Fnon-disc

17 f17 P Fnon-disc f1 P Fnon-disc
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Schrödinger equation
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Schrödinger equation

Homogenization. Consider the Schrödinger equation

´∆uε ` Vεuε “ f in Ω, uε “ 0 on BΩ.

In the periodic case (i.e. Vεpxq “
1
ε

Vper

`

x
ε

˘

), we define

´∆u‹ ` V‹u‹ “ f in Ω, u‹ “ 0 on BΩ,

with V‹ P R defined through a corrector w , periodic solution to

´∆w “ Vper in Rd .

Homogenization assesses that

uε ´ u‹ Ñ 0 in L2
pΩq,

uε ´
´

1` εw
´x

ε

¯¯

u‹
loooooooooomoooooooooon

uε,1

Ñ 0 in H1
pΩq.

Effective approximation in H1
pΩq. Based on measurements of solutions puεpfpqq1ďpďP

and their gradients, we proceed in two steps:

1. a best potential V is defined through an optimization problem.

2. a corrector term is built using measurements of solution puεpfpqq1ďpďP .
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Defining a best potential V

We consider the optimization problem

inf
VPR

sup
f PL2pΩq

›

›

›
p´∆q´1

p´∆` V qpuεpf q ´ upV , f qq
›

›

›

2

L2pΩq
,

with u “ upV , f q solution to

´∆u ` V u “ f in Ω, u “ 0 on BΩ.

It holds that

Proposition (Existence and uniqueness)

In the periodic setting, there exists a unique minimizer V
opt
ε for sufficiently small ε.

Proposition (Asymptotic consistency)

In the periodic setting, the following convergence holds:

lim
εÑ0

V
opt
ε “ V‹.
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Defining a corrector term

By homogenization, we know that

∇uε « ∇u‹ ` u‹ p∇wq
´x

ε

¯

in L2
pΩq.

We define a corrector

inf
CPpL2pΩqq

dˆd
sup

f PL2pΩq

›

›∇uεpf q ´∇upf q ´ Cupf q
›

›

2

L2pΩq
,

where upf q “ upV
opt
ε , f q.

10´2 10´1
10´2

10´1

ε

Errε,QpV q “ sup
f PVQ

n pΩq

}uεpf q ´ upV , f q}L2pΩq{}uεpf̂ q}L2pΩq

V
opt
ε

V‹

10´2 10´1
10´2

10´1

ε

Errcorr
ε,QpV ,Cq “ sup

f PVQ
n pΩq

}∇uεpf q ´∇upV , f q ´ CupV , f q}L2pΩ̃q{}∇uεpf̂ q}L2pΩ̃q

Our approach

Homogenization

Figure: Comparison of our approach and homogenization in L2-norm (left) and H1-norm (right).
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