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General introduction



Multiscale systems

Multiscale systems are characterized by the presence of several scales of interest that
interact or influence one another.

They may be found in various scientific areas: engineering, biology, physics, ...

airplane wing ~ 10m V.S. carbon fibers ~ 107%m

Figure: Composite material used in the aeronautics industry.
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Multiscale systems

Multiscale systems are characterized by the presence of several scales of interest that
interact or influence one another.

They may be found in various scientific areas: engineering, biology, physics, ...

5

bridge ~ 10°m v.s. mineral aggregate ~ 10™’m

Figure: Concrete: a multiscale material.
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Approximation of multiscale PDE
e Consider the problem
—div(A:Vu:) =fin Q,

where A is oscillating at a small length scale £ « |Q|.
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Approximation of multiscale PDE

e Consider the problem
—div(A:Vue) = fin Q,
where A is oscillating at a small length scale £ « |Q|.

e Applications: heat transfer in thermal engineering, (simplification of) elastic problem
in mechanics, ...

L d
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Approximation of multiscale PDE

e Consider the problem
—div(A-Vu:) =fin Q,

where A. is oscillating at a small length scale £ « |Q].

Objective

Based on measurements about the system, construct an approximation of the mapping

Le: f— u(f).
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Limited information

Experimental settings:

o little knowledge on microstructure.

@ availability of couples (configuration, system response).

Settings with limited information:

@ No assumptions on microstructure (non periodic case, € small but not infinitely

small, ...).

o Qualitative restrictions (coarse measurements, noisy measurements, ...

e Quantitative restrictions (limited budget of measurements).

Simon Ruget (ENPC & Inria)

).

PhD Defense

December 2, 2025

5/32



Limited information

Experimental settings:
o little knowledge on microstructure.

@ availability of couples (configuration, system response).

Settings with limited information:
@ No assumptions on microstructure (non periodic case, € small but not infinitely
small, ...).
o Qualitative restrictions (coarse measurements, noisy measurements, ...).

o Quantitative restrictions (limited budget of measurements).

Simon Ruget (ENPC & Inria) PhD Defense December 2, 2025 5/32



[ll-posedness of inverse multiscale problems

!Bensoussan, Lions, Papanicolaou, Asymptotic analysis for periodic structures, 1978.
Simon Ruget (ENPC & Inria) PhD Defense December 2, 2025 6/32



[ll-posedness of inverse multiscale problems

It is well known that identifying A. from measurements is an ill-posed problem.

!Bensoussan, Lions, Papanicolaou, Asymptotic analysis for periodic structures, 1978.
Simon Ruget (ENPC & Inria) PhD Defense December 2, 2025 6/32



[ll-posedness of inverse multiscale problems

’ It is well known that identifying A. from measurements is an ill-posed problem.

Homogenization (see e.g. [BLP78]") builds PDE with slowly varying coefficients that
accurately approximate the oscillating PDE.

—div(A:Vu:) =f in Q, —div(A.Vu,) =f in Q,
u-=0 on 0Q. |0 ue. =0 on 0.
Oscillating System Homogenized System

!Bensoussan, Lions, Papanicolaou, Asymptotic analysis for periodic structures, 1978.
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e Recovering A.



Different approaches

e Recovering A.

L, lllposed in general (Lions 1976), unless...
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Different approaches

e Recovering A.
L, lllposed in general (Lions 1976), unless...

L, strong assumptions on microstructure (Engquist & Frederick 2017, Abdulle & Di
Blasio 2019, Lochner & Peter 2023),

L, availability of fine scale data (Bal & Uhlmann 2013).

Ue OxUe a>2<x Ue
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Different approaches

e Recovering A
L, Illposed in general (Lions 1976), unless...

L, strong assumptions on microstructure (Engquist & Frederick 2017, Abdulle & Di
Blasio 2019, Lochner & Peter 2023),

L, availability of fine scale data (Bal & Uhlmann 2013).

o Identifying the map f — u.(f)

L, Effective coefficients (Nolen & Papanicolaou 2009, Le Bris & al. 2018).
L, Model calibration (Chung & al. 2019, Peterseim & al. 2020).

L, Operator learning (Stuart & al. 2024).

Issue: how to proceed in contexts of limited information?
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Effective coefficients

Effective coefficients are coefficients varying at the macroscopic scale that encapsulate
the fine-scale features of highly oscillatory coefficients.
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Effective coefficients

Effective coefficients are coefficients varying at the macroscopic scale that encapsulate
the fine-scale features of highly oscillatory coefficients.

Example. Homogenization assesses the existence of an effective coefficient A, such that

Le:f—> u(f) sol. to —div(A-Vu.) =f
i
La, i f— u.(f) sol. to —div (A, Vu,) =f

with respect to the norm L£(L*(Q)).

Simon Ruget (ENPC & Inria) PhD Defense December 2, 2025 8/32



Effective coefficients

the fine-scale features of highly oscillatory coefficients.

Effective coefficients are coefficients varying at the macroscopic scale that encapsulate

Example. Homogenization assesses the existence of an effective coefficient A, such that

Le: f— u(f) sol. to —div(A:Vue) = f

i

La, 1 f— u(f) sol. to —div(A.Vu.) = f
with respect to the norm L£(L*()).

In the periodic case A (x) = Aper (£), with Aper Q-periodic:

A* = / Aper(VW + Id)7
Q

where w is a corrector defined through a PDE involving Aper.

-1
In particular, in dimension d = 1, it holds that A, = (Jo t)
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Effective coefficients

Effective coefficients are coefficients varying at the macroscopic scale that encapsulate
the fine-scale features of highly oscillatory coefficients.

Example. Homogenization assesses the existence of an effective coefficient A, such that

Le: f— u(f) sol. to —div(A:Vue) = f
i
La, 1 f— u(f) sol. to —div(A.Vu.) = f

with respect to the norm L£(L*()).

Two major limitations of homogenization:
o No formulas for A, in the general case.

@ Valid only in the regime of separated scale (i.e. € — 0).
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Overview

Objective

Based on available observables, define an effective operator —div (ZV) such that, for
any f, the solutions u.(f) to

—div(A:Vu:) = f

are satisfactorily approximated by the solutions T = u(A, f) to the coarse problem

—div(AVT) = f.
y
Part | -----. Construct A in the set ngfnd.
Part Il ------ Identify A in the vicinity of a known coefficient Ao.
Part IIl ------ Select A within a predefined list A = {Ay, ..., Ay}.
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Overview

Objective

Based on available observables, define an effective operator —div (ZV) such that, for
any f, the solutions u.(f) to

—div(A:Vu:) = f

are satisfactorily approximated by the solutions T = u(A, f) to the coarse problem

—div(AVT) = f.
y
Part | ---.-- Construct A in the set ngfnd.
Part Il ------ Identify A in the vicinity of a known coefficient Ag.
Part Il ------ Select A within a predefined list A = {Ay, ..., Ay}.
( Part IV - e Effective approximation of Schrodinger equation).
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Part |

Effective modeling from boundary agregated measurements
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A proof of concept [CRAS2013]?, [COCV2018]3

For any g € L3(0Q), consider the solution u. = ue(g) with vanishing mean to

—div(A:Vu:) =0in Q, (A:Vue) - n= g on 0Q. (1)

2C. Le Bris, F. Legoll, K. Li, CRAS, 2013.
3C. Le Bris, F. Legoll, S. Lemaire, ESAIM COCV, 2018.
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The quality of the effective coefficient A can be quantified through the functional

sup  Ju:(g) — U(Z7g)HL2(Q)~

lel 2 ag)=1

The strategy consists in minimizing the worst case scenario by looking at the
optimization problem

inf sup  |u:(g) - U(Z7 g)HLZ(Q)A

a dxd
AR5 gl 2 (ag) =1
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A proof of concept [CRAS2013]?, [COCV2018]3

For any g € L3(0Q), consider the solution u. = ue(g) with vanishing mean to

—div(A:Vu:) =0in Q, (A:Vue) - n= g on 0Q.

For A€ R&xd a constant symmetric coefficient, consider T = u(A, g) the solution to

—div (AVD) = 0 in Q, (AVT) - n =g on 0Q.

The quality of the effective coefficient A can be quantified through the functional

sup  |u-(g) - U(Z7g)HL2(Q)~

lel 2 ag)=1

The strategy consists in minimizing the worst case scenario by looking at the
optimization problem

inf sup  |u:(g) - U(Z7 E)HB(Q)A

a dxd
AR5 gl 2 (ag) =1

Issue: Using the full solutions wu. in the whole domain Q2 as observables is

(1)

)

disproportionate to estimate a d x d constant symmetric matrix, and irrealistic from an

experimental point of view.

2C. Le Bris, F. Legoll, K. Li, CRAS, 2013.
3C. Le Bris, F. Legoll, S. Lemaire, ESAIM COCV, 2018.
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Practical observables

Only coarser observables are usually experimentally accessible, such as the energy

5(A57g) =

2

2,

AVu. -Vu. — /

JoQ

g u:(g) =

2

. /mg u:(g)-

Discussions with E. Baranger, L. Chamoin, E. Daghia (LPMS, ENS Paris-Saclay).
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Practical observables

Only coarser observables are usually experimentally accessible, such as the energy

1 1
E(Ac,g) = §/QA5VUE Ve — [Qg u:(g) = ) [Qg u:(g)-

Motivation:

o £(Ac, g) passes to the homogenized limit:

g(A57g) :5 g(A*Hg) in R7

where £(A+, 8) = 3 [ AV, - Vu, — [, g u. and where u, denotes the
homogenized solutlon.

o £(A., g) is an integrated quantity at the boundary, thus it presents the
characteristics of a quantity that is experimentally accessible.

o E(A., g) is a scalar, thus it provides no direct insights about the microscale.

Discussions with E. Baranger, L. Chamoin, E. Daghia (LPMS, ENS Paris-Saclay).
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A new formulation

For Ae ngxmd a constant symmetric coefficient, denote T = u(A, g) the solution to

—div (AV1) =0in Q, (AVT) - n = g on 0Q.
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For Ae ngxmd a constant symmetric coefficient, denote @ = u(A, g) the solution to
—div (AV1) =0in Q, (AVT) - n = g on 0Q.

To assess the quality of the effective coefficient A, we use the functional

) ulAgiiog’ —  sup  |E(A-,g) —E(Ag)”.
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A new formulation

For Ae ngxmd a constant symmetric coefficient, denote @ = u(A, g) the solution to
—div (AV1) =0in Q, (AVT) - n = g on 0Q.

To assess the quality of the effective coefficient A, we use the functional

) ulAgiiog’ —  sup  |E(A-,g) —E(Ag)”.

&l 2 a0y =1

,j’rJ,LL/:JQT;ﬁL,,,,/

Our strategy consists in minimizing the worst case scenario by looking at the
optimization problem

. A 2
_ lnjxd sup ‘E(Afvg) _S(Arg)l .
Ae Rsym HgHLZ(p,Q>:1
a<A<p
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Theoretical analysis

In the limit of vanishing ¢, the problem leads to the homogenized diffusion coefficient as

shown by the following proposition.

. — 2
IE = _ inf sup |8(A57g) 78(Aag)|

AcRIXD  lel2(00)=1

a<A<B

Je (A)

Proposition (Asymptotic consistency, periodic case)

S — .
For any sequence of quasi-minimizers (AE ) , I.e. sequence such that
e>0

I < Je (Z?) < I + err(e),

the following convergence holds:

. a#
EIl_rQ) Al = A.. (4)
Simon Ruget (ENPC & Inria) PhD Defense
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Sketch of proof

Three ingredients:

@ Optimization over compact set So,3 — Zf converges to Ay up to an extraction.
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Sketch of proof

Three ingredients:

@ Optimization over compact set So,3 — Zf converges to Ay up to an extraction.
e Homogenization = &.(g) e Eg) = I HOO = &.(g) — Ex(g).
E—> E—>

e—0

Polarization relation implies that for any f, g € L3(9Q):

/m f u(A.,g) = /m fulAy.g).

u(A.,g) = u(Ays,g) in L(002). 5)

Thus,
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Sketch of proof

Three ingredients:

@ Optimization over compact set So,3 — Zf converges to Ay up to an extraction.
e Homogenization = &.(g) e Eg) = I HOO = &.(g) — Ex(g).
E—> E—>

e—0

Polarization relation implies that for any f, g € L3(9Q):

/m f u(A.,g) = /m fulAy.g).

u(A.,g) = u(Ays,g) in L(002). 5)

Thus,

o Use that A, Ay are constant coefficients and exploit (5) evaluated at particular

loadings (gi),_,_d(+1 to conclude that
<i< i

A, = Ay
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Computational procedure

We apply an iterative algorithm to solve B
_ Indfd sup ‘g(AE7g) _€(A7g)|2
Aergn® lel2any=1

a<A<§g
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Computational procedure

We apply an iterative algorithm to solve

inf sup
74 e rIxd

a<A<§g

Given an iterate ﬂ”,
Q Define g", the argsup to

sup

g st HgHL2(aQ) =

. =il .
@ Define A"" , the optimizer to

inf (E(A,g") —E(Ag")

Ae ]ngif,d

Simon Ruget (ENPC & Inria)
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Computational procedure

We apply an iterative algorithm to solve B
inf sup  €(A, ) — E(A 8%

= dxd
Aer%? gl 2 on) =1

a<A<§g

Given an iterate ﬂ”,
Q Define g", the argsup to

sup (S(Aag) — 5@"75;))2»

g st HgHL2(OQ) =1

. _ : ; ~ d(d+1)
In practice, SUPgei2() > SUPgevp ON Vp = Span{P loadings}, with P ~ =5—.

This step requires computing P solutions to a coarse PDE in order to get the energy
E(A"))).
We next solve a P x P eigenvalue problem.
. —=ntl e
@ Define A"" , the optimizer to
inf (£(A-,g") —E(A,g"))

Ae ]ngi;d

2

In practice, we perform a gradient descent together with a line search.
The gradient can be expressed with solutions computed in previous step, hence
no additionnal costs.
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Choice of the loadings

We identify P appropriate loadings (gi)1<i<p such that
sup |E(Ac,g) —E(Ag)|~ sup |E(A.,g) —E(Ag)|.

geLS(éQ) ge Sp_an (&)

1<i<P
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Choice of the loadings

We identify P appropriate loadings (gi)1<i<p such that
sup |E(Ac,g) —E(Ag)|~ sup |E(A.,g) —E(Ag)|.
gel2(o9) g€ Span (g;)

1<i<P

Rayleigh quotient: we optimize

I’

_ e (T —Ts
sup  |E(Ac,8) —E(A,g)| = sup Jea8 (T~ Ta)g - 2 &
Il 2 50y =1 gel2(20) Y4

where
T:: g€ Lg(@Q) — u:(g)|on with u:(g) sol. to (1),

Tx:g € L3(0Q) — u(A,g)laa  with u(A, g) sol. to (2).

Thus, we seek the eigenmode of 7. — 73 with largest eigenvalue in absolute value.
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Choice of the loadings

We identify P appropriate loadings (gi)1<i<p such that
sup |E(Ac,g) —E(Ag)|~ sup |E(A.,g) —E(Ag)|.
gel3(09) gelipinp(g,)
Rayleigh quotient: we optimize
— 08T —Ta)g
sup  |E(A.,8) —E(Ag)| = sup IQ—2A :
Il 2 50y =1 gel2(20) Y4

where
T:: g€ Lg(@Q) — u:(g)|on with u:(g) sol. to (1),

Tx:g € L3(0Q) — u(A,g)laa  with u(A, g) sol. to (2).
Thus, we seek the eigenmode of 7. — 73 with largest eigenvalue in absolute value.
Case of spheric, periodic coefficients: it holds that

Te —T; v (Ax—A) T

with 7 : g € L3(8Q) — w(g)|an where w(g) is solution to
—Aw =0in Q, Vw - n=gon 0.

Simon Ruget (ENPC & Inria) PhD Defense December 2, 2025

17/32
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We identify P appropriate loadings (gi)1<i<p such that
sup |E(Ac,g) —E(Ag)|~ sup |E(A.,g) —E(Ag)|.

gel2(o9) g€ Span (g;)

1<i<P

Rayleigh quotient: we optimize

I’

_ e (T —Ts
sup  |E(Ac,8) —E(A,g)| = sup Jea8 (T~ Ta)g - 2 &
Il 2 50y =1 gel2(20) Y4

where
T:: g€ Lg(@Q) — u:(g)|on with u:(g) sol. to (1),

Tx:g € L3(0Q) — u(A,g)laa  with u(A, g) sol. to (2).
Thus, we seek the eigenmode of 7. — 73 with largest eigenvalue in absolute value.
Case of spheric, periodic coefficients: it holds that

T- =Tz v (Ax—A) T
with 7 : g € L3(8Q) — w(g)|an where w(g) is solution to

—Aw =0in Q, Vw - n=gon 0.

Practical choice: We select the P X Py = w first eigenmodes of 7.
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Numerical results (periodic)

In 2D (Q =]0, 1[?), we consider the coefficient

Ac(x,y) = AP (27 }g’) _ <zz+ 10 x (sin(2m X) + sin(27 L)) 0 ) ’

0 1242 x (sin(2m %) +sin(2r L))

for which

A~ (193378 0
T 0 11.8312) -

® )
coveo®e
Vo000 0OOOG
ER R R T LR RRR
lvoo00OOOOG
2222222
voeeee0O®e

Figure: Components 11 and 22 of coefficient Ac.
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Numerical results (periodic)

A-A, T — e () —u(A8)l 2 g
| \A,|2‘2 Erre,0(A) = SUPsespan(a.....50) (W
F — —_ . ‘ ‘
i 1 05|
L |
0 104
I 103}
1072 = E
F 102
N
107° | 0
N i 0F | | ‘ .
107 107! 0.1 0.2 03 0.4
€ e

Figure: (left) Error between coefficients A. and ZL\/!I,E;,.

(right) Criterion Err. o(A) for A€ {A*,Zg\;,ﬁgi, ,Zyj_—,} (with Q = 11).
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Numerical results (stochastic)
We now use a non periodic coefficient (random checkerboard),

Aty = (2, 20) - (£ e (52) )0

kez?

with X i.i.d random variables such that P(Xk = 71) = P(Xk = 72) = 5 and
(71772) = (47 16)

We have
A. = /7172 Id.
Figure: Two realizations of coefficient Ac.
Our strategy rewrites le = infsup |[E(E (Ag (-, w), f)) — E(A, f)|. Confidence intervals are computed from 40 realizations of the expectation (itself

approximated by its empirical mean using 40 realizations of the coefficient a5t©).
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Numerical results (stochastic)

P 1w ()~ u(A8) |2 g
Err. (A) = SUPzespan(ay.....z0) (W

T T T

0.1 4 025f -
8-1072 . 0.2+ =
6-107 4 01s| }
4.1072 - 01l B

—2
2.10 5.10-2 - i

€ €

Figure: (left) Error between coefficients A, and Zgi.

(right) Criterion Err]f’Q(Z) for Ae {A*,Zgiﬁﬁ,iﬁ} (with Q = 11).
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Noise

Motivation: The value of the energy may not be known exactly.

Formulation: Consider a multiplicative noise in the energy:

E(Ac,g0) = (1 +0n) E(Ae, 8).

where A is a deterministic periodic coefficient, and 7 follows a Gaussian distribution.

Simon Ruget (ENPC & Inria) PhD Defense

December 2, 2025

22/32



Noise

Motivation: The value of the energy may not be known exactly.
Formulation: Consider a multiplicative noise in the energy:
E(Ac, g0) = (1 +0m) E(A,8).

where A is a deterministic periodic coefficient, and 7 follows a Gaussian distribution.

Results:
== A - A / (A |
Cl 95%
= : : : : : =
002 004 006 008 0.1
o
[AME _ZME |
Figure: Error % as a function of the noise magnitude o (for € = 0.025).
e 12
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Part 1|
Perturbative reconstruction of effective coefficients
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Perturbative reconstruction of effective coefficients

e Assumption: The effective coefficient lies in neighboorhood of a known coefficient Ao.
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Perturbative reconstruction of effective coefficients

o Assumption: The effective coefficient lies in neighboorhood of a known coefficient Ao.

e Example: Periodic material with random defect
Acn(x,w) = A (x) + by (w) CE¥(x),
with CP possibly not negligible, but
Avn = Ao+ 1AL + o(1),

where Ag is known (e.g. given as an industrial reference).

Ll |
(il
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Perturbative reconstruction of effective coefficients

e Assumption: The effective coefficient lies in neighboorhood of a known coefficient Ao.

e Issue: Computing the effective coefficient using previous methods for many realizations
w and different defect rates 17 may lead to prohibitive computational costs...

Question

How can we use the a priori knowledge of Ay to guide and speed up the optimization ? J
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Perturbative development

Consider the problem

—div (A:Vu:) = f in Q, and
and its approximation by

—div (ZVH) =fin Q, and
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Perturbative development

Consider the problem

—div (A:Vue) = fin Q, and u. = 0 on 09,
and its approximation by
—div (ZVE) =fin €, and u =0 on 00.
Exact | Perturbative expansion
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Perturbative development

Consider the problem

—div (A:Vue) = fin Q, and u. = 0 on 09,
and its approximation by
—div (ZVE) =fin €, and u =0 on 00.

Exact Perturbative expansion
A Zo + 77§
u(A,f) uo + nv

where ug = u(Ao, f) and v = v(Ag, B, f) is solution to
—div (A Vv) =div(BVuw) inQ,
v=0 on 0.
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Perturbative development

Consider the problem
—div (A:Vu:) = f in Q,
and its approximation by

—div (ZVH) =fin Q,

and us = 0 on 09,

and =0 on 00.

Exact Perturbative expansion

A Zo + 77§
u(A, f)

up + nv

where up = u(Ao, f) and v = v(A, B, f) is solution to
—div (Zon) = div (EVUO) in Q,
v=0 on 0.
Linearity implies that v = >, Bjv; with v;j = v;;(Aq, f) solution to

—div (AcVvy) = div(E;Vuw)  in Q,
vi=0 on 052
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Perturbative development

Consider the problem

—div (A:Vue) = fin Q, and u. = 0 on 09,
and its approximation by
—div (ZVE) =fin €, and u =0 on 00.
Exact Perturbative expansion
A Ao+ 1B
u(A, f) uo + nv
E(Af) | E(Ao, ) + 1Y, By Fij(Ao, f)

where £(Ao, f) = —1 [, f uo and
_ 1
Fij(Ao, f) = —*/ f v
2 Ja

1
= E/Qa,-uo 0juo.
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Perturbative development

Consider the problem

—div (A:Vue) = fin Q, and u. = 0 on 09,
and its approximation by
—div (ZVE) =fin €, and u =0 on 00.
Exact Perturbative expansion
A Ao+ 1B
u(A, f) ug + nv
E(AF) | E(Ao, f) +n Y, BjFij(Ao, f)

We formulate the optimization problem
2
inf sup | E(Acn, f) —E(Ao, f) = > [BlyFy(Ao )] .
Be ]ngm s HfHL2(Q):1 1<ij<d

a<Ag+B<p
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Implementation aspects

o Offline stage:
o Compute u(go, f). B
o Compute E(Ag, ) and Fjj(Ao, f) forany 1 <i<j<d.

d(d+1) d(d+1) )
2 2

L, computing P ~ solutions to a coarse PDE and P(1 + integrals.
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Implementation aspects

o Offline stage:
o Compute U(Em f). B
o Compute E(Ag, ) and Fjj(Ao, f) forany 1 <i<j<d.

d(d+1) d(d+1) )
2 2

L, computing P ~ solutions to a coarse PDE and P(1 + integrals.

@ Online stage: we apply a gradient descent
o Define ", the argsup to

sup E(Ac, f) — E(Ao, f) = >, [B"]; Fij(Ao, f)
fost |fl 2 =1 7

o Define
Sn+1

B =B" - uVgJe (B

with

J2(B) = [ E(Ac, ") — E(Ao, ") — Y [Bly Fij(Ao, ")
ij
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Implementation aspects

o Offline stage:
o Compute U(Em f). B
o Compute E(Ag, ) and Fjj(Ao, f) forany 1 <i<j<d.

L, computing P ~ @ solutions to a coarse PDE and P(1 + @) integrals.
@ Online stage: we apply a gradient descent
o Define ", the argsup to
2
sup E(Ac, f) — E(Ao, f) = >, [B"]; Fij(Ao, f)
fost |fl2q) =1 i
In practice, supfc;2(q) — SUPfey, On Vp = Span{P loadings}, with P ~ w

This step amounts to solving a P x P eigenvalue problem.

o Define il — o
B"" =B" - uvgJi(B")

with
2
JI(B) = | E(Ac, ") — E(Ao, ") = 3 [Bly Fij(Ao, ")
ij
Observe that J! is quadratic.
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Implementation aspects

o Offline stage:
o Compute U(Em f). B
o Compute E(Ag, ) and Fjj(Ao, f) forany 1 <i<j<d.

L, computing P ~ @ solutions to a coarse PDE and P(1 + @) integrals.
@ Online stage: we apply a gradient descent
o Define ", the argsup to
2
sup E(Ac, f) — E(Ao, f) = >, [B"]; Fij(Ao, f)
fost |fl2q) =1 i
In practice, supfc;2(q) — SUPfey, On Vp = Span{P loadings}, with P ~ w

This step amounts to solving a P x P eigenvalue problem.

o Define il — o
B"" =B" - uvgJi(B")

with
2
JI(B) = | E(Ac, ") — E(Ao, f") = Y [Blyj Fij(Ao, ")
ij
Observe that J! is quadratic.
L» no additional computations of coarse PDE !
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Numerical results

- Preserve the quality of the approximation.
- Reduction of computational costs (by a factor of ~ 80 to 400).

— SUPgeSpan |E(ue, (8))—u(A8) 24
o Errgn( ): gESpan(g1,---.&p) =.m 12(D)

A TECue 7 @),z )
T 0.12 ‘ : :
350 - - —B— Homogenization
—8— InfSupEnergy
01l |F Perturbation o
£l
300 |- i 0
81072 —
250 |- B
—&— Homogenization 6-1072 u
—8— InfSupEnergy
2001 —&— Perturbation ||
‘ ‘ : : L 4.1072 | | I |
0 5.1072 0.1 0.15 0.2 0 5.10~2 0.1 0.15 0.2
n 7

Figure: (left) Component 22 for various approximations of the effective coefficient.
(right) Criterion Erer(Z) for different constant coefficients (with Q = 9 and ¢ = 0.025).
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Part 11l
Efficient selection of effective coefficients
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Framework

e Setting: we are given
- a list of candidate coefficients A = {Ay, ..., An}.
- a list of admissible loadings F = {fi, ..., fp}.

- a measurement operator O : A x F — R or L*(Q) (e.g. O(A.,f) = u:(f) or
E(Ac, f)).

Work inspired by discussions with H. Ammari (ETH Ziirich).
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Framework

e Setting: we are given
- a list of candidate coefficients A = {Ay, ..., An}.
- a list of admissible loadings F = {fi, ..., fp}.
- a measurement operator O : A x F — R or L*(Q) (e.g. O(A.,f) = u:(f) or
E(A:, 1)).
e Challenge:

- Expensive measurement costs = budget of Q « P measurements.
- (Unknown) decomposition of F into Fgisc and Fron-disc Such that

card (Faisc) < card (F),
and for any f € Frondisc and any A, B € A%,
|O(A:, ) = O(A, o ~ |O(A:, f) = O(B, f)| o

Work inspired by discussions with H. Ammari (ETH Ziirich).

Simon Ruget (ENPC & Inria) PhD Defense December 2, 2025

29/32



Framework

e Setting: we are given
- a list of candidate coefficients A = {Ay, ..., An}.
- a list of admissible loadings F = {fi, ..., fp}.
- a measurement operator O : A x F — R or L*(Q) (e.g. O(A.,f) = u:(f) or
E(A:, 1)).
e Challenge:

- Expensive measurement costs = budget of Q « P measurements.
- (Unknown) decomposition of F into Fgisc and Fron-disc Such that

card (Faisc) < card (F),
and for any f € Frondisc and any A, B € A%,
|O(A:, ) = O(A, o ~ |O(A:, f) = O(B, f)| o

Objective

Select the coefficient in A that provides the best effective approximation of the
underlying system while simultaneously minimizing the number of measurement
operations O(A., f) with f € F.

Work inspired by discussions with H. Ammari (ETH Ziirich).

Simon Ruget (ENPC & Inria) PhD Defense December 2, 2025

29/32



Selection algorithm

Iterative algorithm: each step k selects a loading f* in F and update the choice of the
best coefficient A" in A.

Selection algorithm
Iterate k:

@ Compute discrimination rate AX(f) for any f in F* = F\{fP}p=1
Q@ Select

..... k—1-

¥ e argmax A*(f).
e

© Measure O(Ae, f¥).
@ Define the effective coefficient

Ae argmin 7" (A).
Ac A
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Selection algorithm

Iterative algorithm: each step k selects a loading f* in F and update the choice of the
best coefficient A" in A.

Selection algorithm

Iterate k:
@ Compute discrimination rate AX(f) for any f in F¥ = F\{fP}p=1... k-1.
Q@ Select

¥ e argmax A*(f).
e

@ Measure O(A., ).

@ Define the effective coefficient

Ae argmin 7" (A).
Ac A

Core components:

@ Discrimination rate: A estimates how a loadings is discriminative w.r.t @ and A.

o Effectiveness score : v* assesses the quality of a coefficient as an effective coefficient
for the system.
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Conclusion and perspectives
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Conclusion and perspectives

Our strategies

@ aim at determining effective approximations for multiscale PDEs through effective
coefficients,

o are designed for context where only limited information is available,

@ are inspired by homogenization theory and consistent with it (numerically and
theoretically),

@ can be extended outside the regime of separated scale.
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Conclusion and perspectives

Ou

@ aim at determining effective approximations for multiscale PDEs through effective
coefficients,

=

strategies

o are designed for context where only limited information is available,

@ are inspired by homogenization theory and consistent with it (numerically and
theoretically),

@ can be extended outside the regime of separated scale.

Perspectives
@ Application to real experimental data.
o Extension to non-constant effective coefficients.
e Convergence analysis of A to A,.

o Convergence analysis of selection algorithm.
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Conclusion and perspectives

Our strategies

@ aim at determining effective approximations for multiscale PDEs through effective

coefficients,
o are designed for context where only limited information is available,

@ are inspired by homogenization theory and consistent with it (numerically and
theoretically),

@ can be extended outside the regime of separated scale.

Perspectives
@ Application to real experimental data.
o Extension to non-constant effective coefficients.
e Convergence analysis of A to A,.

o Convergence analysis of selection algorithm.

Thank you !
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A different perspective on noise

Motivation: anticipate on reproducibility errors during model deployment.

Idea: treat A as a random field and optimize upon its mean.

Formulation: consider the problem

2

)

_inf  sup  |E(A-,g) —E(E(A+om,8)))
A€Sa 3 |glpa) =1

where 7 is a Gaussian variable.

0.15

A, /A
Cl 95%

0.1

5.1072

ME

Figure: Error between A_ _ and ZQAE as a function of the noise magnitude o (for e = 0.05).
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Convergence analysis

We consider the slightly modified

7Inf |€(A57g/7j) - 5(27 g",j)’ 5
Ae ngﬁ]d7 1<§<d

a<A<p
where (gij)1<i<j<d are preselected loadings.

For an appropriate choice of loadings (gij)1<i<j<d, it holds that

‘Zﬁ"t Al <o),

where §(¢) is any function such that

IE(A) — E(AL)] < Co(e).
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Loading selection

We define
e + €
8ij = T - n,
where (€;)1<i<d is the canonical basis of RY.
For any A e RZ%?, the solution to

—div (ZVH) =0in Q, (ZVU) -n = gijon 0L.

_ ——1
ujj = (A e,-,j> - X.

writes

Thus the energy writes:

E(Z, g,'yj) = 12 (Zileu)TZ (Zile,'d) = |Q|e,-,TJ-Z71e,',j
RS N —

(Vu )T Vi
Then, we get
[A- A< Cla™ - A
<c lef A" = A ey
1<isj<d
< ...
< Co(e)
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Efficient selection of effective coefficients
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Framework

e Setting: we are given
- a list of candidate coefficients A = {Ai, ..., An}.
- a list of admissible loadings F = {fi, ..., fp}.
- a measurement operator O : A x F — Ror L*(Q) (e.g. O(A.,f) = u:(f) or
E(Ac, f)).
e Challenge:

- Expensive measurement costs = budget of Q « P measurements.

- (Unknown) decomposition of F into Fgisc and Fron-disc Such that
card (Fgisc) < card (F),
and for any f € Frondisc and any A, B e A%

[O(A:, f) = O(A, )]0 ~ |O(A:, f) — O(B, f)o.

Objective

Select the coefficient in A that provides the best effective approximation of the
underlying system while simultaneously minimizing the number of measurement
operations O(Ac, f) with f € F.
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Strategy

Iterative algorithm: each step k selects a loading f* in F and update the choice of the
=k
best coefficient A™ in A.
Core components:
@ Discrimination rate: it estimates how a loadings is discriminative w.r.t observable O.

o Effectiveness score: it assesses the quality of a coefficient as an effective coefficient
for the system.
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Strategy

Iterative algorithm: each step k selects a loading f* in F and update the choice of the
best coefficient A" in A.

Core components:
@ Discrimination rate: it estimates how a loadings is discriminative w.r.t observable O.

A B A B _ [o(AH-0@BNlo
A (f) (Z’r%?;(AZErr(A, B,f) | Err(A,B,f) = AN
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Strategy

Iterative algorithm: each step k selects a loading f* in F and update the choice of the
best coefficient A" in A.

Core components:

o Discrimination rate: it estimates how a loadings is discriminative w.r.t observable O.

Ay (f) max Err(A, B, f) Err(A, B, f) = M
(A;B)eA? 10A, )| o

> “(A,f) — Err(B (A f) — oG N-0@&NIo
A (f) (zf%?é}z |Ert(A, f) — Ert*(B,f)| | Er“(Af) = ol
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Strategy

Iterative algorithm: each step k selects a loading f* in F and update the choice of the
best coefficient A" in A.

Core components:

@ Discrimination rate: it estimates how a loadings is discriminative w.r.t observable O.
7B 7B _ oA H-0(B.f]o
Aq(f) (Z2?242Err(A. B, f) Err(A, B, f) = AN e
A5(F) max |Er*(A, f) — Ert*(B, f) Ert“(A, f) = —HO(ZK'kaaﬂuo
! (Z.B):;Az OA™,N)|o
A(F) max |Err.(A, f) — Erro(B,f)| | Err-(A,f)
(Z,E)EAZ

_ 10(A.N-0ANIo
[0(A.Hlo
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Strategy

Iterative algorithm: each step k selects a loading f* in F and update the choice of the
best coefficient A" in A.

Core components:

@ Discrimination rate: it estimates how a loadings is discriminative w.r.t observable O.

A B A B f) = [OAN_0BNH]o
Aq(f) (Z%w?:AQErr(A. B,f) Err(A, B, ) = 2G5
Aé(f) max ‘Errk(Z, f)fErrk(’E. f) Errk(Z, f) = w
" | (AB)ea? ’ O@A o
As(f) (Z.rgiiﬁ Erro(Af) = Errc(B.f)| | Erre(A f) = W

o Effectiveness score: it assesses the quality of a coefficient as an effective coefficient
for the system.
L eg.

k -
A) = Err.(A, ).
VA = max  Erre(Af)
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Strategy

Selection algorithm

Initialization:
Select f' € F by solving

a_ |O(A, f) = O(B, o
= argmax _max = .
feF (A,B)eA2 |O(A, f)|lo

Iterate k:
@ Compute discrimination rate AX(f) for any f in F* = F\{fP}p=1... k-1.
Q Select
¥ e argmax A*(f).
feFk
© Measure O(Ae, f¥).

@ Define the effective coefficient
Ale argmin 7" (A).
Ac A
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Numerical results

25 p—y
- Microstructure. Consider 20
. 27X .
7 + y2sin(—=) if x € Dy, 15
A:(x) = €

Y3 if xe D2. 10

with
Y3 = ax 5

the limit in the sense of homogenization of
X =1+ T2 sin(”TX). 0.2 0.4 0.6 0.8 1

Figure: Coefficient Ac with € = 0.01.
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Numerical results

- Microstructure.
- Set F. Consider

fo= ]].(nﬁlyﬁ)
and
Fonc
{f, s.t. Supp(f,) < D1}
F = U

{fs s.t. Supp(fy) < D»}.

Fnon-disc

Simon Ruget (ENPC & Inria)

PhD Defense

— f e Faisc
—— f € Fron-disc

0.2 0.4 0.6 0.8

Figure: Admissible loadings.
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Numerical results

Microstructure.
Set F.
Set A. Consider

_ Alifx <02,
AX) =4 _,
A if x> 0.2

L=l —2
with A" and A are constants.

Simon Ruget (ENPC & Inria)

PhD Defense

@l >

0.4 0.6 0.8

Figure: Effective coefficients.
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Numerical results: case 1

251 =
. — 7
Setting: —A
207 —
— —7
.A1 = {Ao = (a*, 3*), 15 —A
A1 = (0.953*, a*), 10 FRha
Ay = (0.9a., a.), 5
As = (0.853*, a*),
o 0.2 0.4 0.6 08 1
As = (0.8a,, a.)},
and
card (-Fdisc) — —— eps=0.01
— ~0.2. —
card (.7:) 00004 | — looos
- loooa
000034 ___
0003
0.0002 o
j0002
0.0001 4
001
0.0000 A {0000

000 025 050 075 100 000 025 050 075 100
x
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Numerical results: case 1

Setting:
Step Loadings Best Coefficient
Al = {Ao (ax, ax), 1 fi € Faee Ao
= (0.95a,, a.), 2 f € Fuisc Ao
— (0.9a, a), 3 £z € Fuisc Eo
4 fa € Fuisc Ao
= (0.85a,,  av), 5 f12 € Fron-disc Ao
A; = (0.8a,, a.)}, 6 f13 € Fron-disc Ao
7 fia € Fron-disc Ao
and =
card (]:disc) ~ 0.2 8 f15 € -Fnon—disc éO
card (F) ~ 7 9 | fi6 € Fron-disc Ao
10 | fi7 € Fron-disc Ao
Conclusions: 11 | fig € Frondisc Ao
- A1, Ay and A, perform the same 12 fi9 € Fron-disc Ao
selection. 13 | f20 € Frondisc Ao
- Loadings in Fyic are first identified. 14 | fa € Frondisc Ao
- Ao = (a., a) is the best coefficient at 15 | 2 € Foondic al

each step.
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Numerical results: case 2

251 —
A
20 A
i —7
Setting: 5 _z
—t—t—_%H
A> = A1 U {As = (a., 0.82a.), LR —s
A = (ax, 1.2a.)}, 5
and 0.2 0.4 0.6 0.8 1
card (Fdisc) ~02
card (F) o
—— eps=0.01 —— eps=0.01
— 0 — o0
000051 0jooos 1
— —2
000041 i olooo4 - i
—_—5 —_—5
0.0003 6 0/0003 6
— RHS —— RHS
0.0002 o j0002
0.0001 o 001
0.0000 A {0000

000 025 050 075 100 000 025 050 075 100
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Numerical results: case 2

Setting:

Az = A1 U {As = (ax, 0.82a,),
As = (ax, 1.2a.)},

card (Fdisc)

~ 0.2.
card (F) 0

Conclusions:
- A better replicates A, than A;.

- Ay = (ax, a) is the best coefficient at

each step.

- A selects loadings that do not
precisely discriminate Ag from other
coefficients in A;.

Simon Ruget (ENPC & Inria)

Step A, As
1 fi € Fisc f29 € Fron-disc
2 f2€fdisc fle]:disc
3 f3€fdisc féEIdisc
4 ﬁlefdisc fg‘lej:disc
5 f-29 € ]:non—disc f28 € ]:non—disc
6 f28 € fnon-disc f4 € -Fdisc
7 f12 € ]:non-disc f27 € ]:non-disc
8 f27 € ]:non-disc f12 € Jrnon—disc
9 f26 € ]:non-disc -
10 f25 € ]:non-disc -
11 f4 € Fron-disc -
12 f23 € fnon—disc -
13 f22 € ]:non—disc B
14 f-21 € ]:non-disc -
15 f'20 € fnon-disc -
16 f19 € ]:non-disc -
17 f18 € ]:non-disc -
17 f17 € ]:non-disc -

PhD Defense

December 2, 2025

10/14



Numerical results: case 2

Step A Ay
1 fi € Fisc f29 € Fron-disc
Setting: 2 2 € Fisc f2g € Fron-disc
—_ 3 f3 € fdisc f27 € ]:non—disc
A2 = Al v {és = (3*, 0.828*)7 4 ﬁl € ]:disc f26 € ]:non—disc
Ap = (3*7 1'23*)}7 5 f0 € Fron-disc fos € Fron-disc
and 6 f28 € fnon—disc f24 € ]:non—disc
card (-Fdisc) ~ 0.2 7 fi2 € Fron-disc 23 € Fron-disc
card (].‘) ~ e 8 f27 € Fron-disc fn € Fron-disc
9 f26 € ]:non-disc f21 € -Fnon—disc
Conclusions: 10 | f5 € Frondisc | F0 € Frondisc
- A better replicates A, than A;. 11 fos € Frondisc | f19 € Fron-disc
- Ay = (ax, a) is the best coefficient at 12 | f3 € Fronic | 8 € Foondic
each step:. 13 62 € ]:non—disc f17 € ]:non—disc
14 f-21 € ]:non—disc flﬁ € ]:non—disc
- A selects loadings that do not 15 20 € Frondice | 15 € Foomdiec
precisely discriminate Ag from other 16 fio € Foomdice | ia € Foomdioe
Coefﬁdents in Al' 17 f18 € ]:non-disc f13 € Jrnon—disc
17 f17 € ]:non-disc ﬂ € ]:non-disc
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Schrodinger equation



Schrodinger equation

Homogenization. Consider the Schrédinger equation

—Aue + Veue = fin Q, u: = 0 on 09Q.

In the periodic case (i.e. Vc(x) = I Ver (%)), we define
—Aus + Voeue = fin Q, u, =0 on 09,
with V, € R defined through a corrector w, periodic solution to

—Aw = Ve in R?,
Homogenization assesses that

ue — uy — 0in L*(Q),
Ue — (1 +ew (g)) ue — 0in HY(Q).

Ug,1

Effective approximation in H'(Q). Based on measurements of solutions (u.(f,))1<p<p
and their gradients, we proceed in two steps:

1. a best potential V is defined through an optimization problem.

2. a corrector term is built using measurements of solution (u:(f))1<p<p-
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Defining a best potential V

We consider the optimization problem

2

inf sup |(-A) (A V)(u(h) — u(V, £)
VER fel2(Q)

2@’
with T = u(V, f) solution to

=0 on 09.

c|

—AT+ Vi ="finQ,
It holds that
Proposition (Existence and uniqueness)

In the periodic setting, there exists a unique minimizer V> for sufficiently small .

4
Proposition (Asymptotic consistency)
In the periodic setting, the following convergence holds:
. ~70opt
lim V> = v,.
e—0 y
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Defining a corrector term

By homogenization, we know that
Vue ~ Vus + us (Vw) (g) in L*(Q).

We define a corrector
. _ — 2
-~ inf dnd sup Hvug(f) - vu(f) - Cu(f)HLZ(Q) )
Ce(L2() X fer2(q)

opt

where T(f) = u(V, , f).

Err. o(V) = sup [uc(F) — u(V,F)| 20/ |ue(Flizey  En3(V.C) = sup [Vue(f) — Vu(V.f) - Cu(V, f)\Lz@;\Vuf(?)HLz(m
revR(@) revR(a)

T T
—&— Oura
—&— Homogenization

N

—a—

107? . 102 |
1072 107! 1072 107

Figure: Comparison of our approach and homogenization in L?-norm (left) and H'-norm (right).
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